147 research outputs found

    Network model of immune responses reveals key effectors to single and co-infection dynamics by a respiratory bacterium and a gastrointestinal helminth

    Get PDF
    Co-infections alter the host immune response but how the systemic and local processes at the site of infection interact is still unclear. The majority of studies on co-infections concentrate on one of the infecting species, an immune function or group of cells and often focus on the initial phase of the infection. Here, we used a combination of experiments and mathematical modelling to investigate the network of immune responses against single and co-infections with the respiratory bacterium Bordetella bronchiseptica and the gastrointestinal helminth Trichostrongylus retortaeformis. Our goal was to identify representative mediators and functions that could capture the essence of the host immune response as a whole, and to assess how their relative contribution dynamically changed over time and between single and co-infected individuals. Network-based discrete dynamic models of single infections were built using current knowledge of bacterial and helminth immunology; the two single infection models were combined into a co-infection model that was then verified by our empirical findings. Simulations showed that a T helper cell mediated antibody and neutrophil response led to phagocytosis and clearance of B. bronchiseptica from the lungs. This was consistent in single and co-infection with no significant delay induced by the helminth. In contrast, T. retortaeformis intensity decreased faster when co-infected with the bacterium. Simulations suggested that the robust recruitment of neutrophils in the co-infection, added to the activation of IgG and eosinophil driven reduction of larvae, which also played an important role in single infection, contributed to this fast clearance. Perturbation analysis of the models, through the knockout of individual nodes (immune cells), identified the cells critical to parasite persistence and clearance both in single and co-infections. Our integrated approach captured the within-host immuno-dynamics of bacteria-helminth infection and identified key components that can be crucial for explaining individual variability between single and co-infections in natural populations

    Telomeric expression sites are highly conserved in trypanosoma brucei

    Get PDF
    Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs) of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion, the BES repertoire from the Lister 427 strain of T. brucei were independently tagged and sequenced. BESs are polymorphic in size and structure but reveal a surprisingly conserved architecture in the context of extensive recombination. Very small BESs do exist and many functioning BESs do not contain the full complement of expression site associated genes (ESAGs). The consequences of duplicated or missing ESAGs, including ESAG9, a newly named ESAG12, and additional variant surface glycoprotein genes (VSGs) were evaluated by functional assays after BESs were tagged with a drug-resistance gene. Phylogenetic analysis of constituent ESAG families suggests that BESs are sequence mosaics and that extensive recombination has shaped the evolution of the BES repertoire. This work opens important perspectives in understanding the molecular mechanisms of antigenic variation, a widely used strategy for immune evasion in pathogens, and telomere biology

    Effectiveness of a mental health stepped-care programme for healthcare workers with psychological distress in crisis settings: a multicentre randomised controlled trial

    Get PDF
    Background Evidence-based mental health interventions to support healthcare workers (HCWs) in crisis settings are scarce. Objective To evaluate the capacity of a mental health intervention in reducing anxiety and depression symptoms in HCWs, relative to enhanced care as usual (eCAU), amidst the COVID-19 pandemic. Methods We conducted an analyst-blind, parallel, multicentre, randomised controlled trial. We recruited HCWs with psychological distress from Madrid and Catalonia (Spain). The intervention arm received a stepped-care programme consisting of two WHO-developed interventions adapted for HCWs: Doing What Matters in Times of Stress (DWM) and Problem Management Plus (PM+). Each intervention lasted 5 weeks and was delivered remotely by non-specialist mental health providers. HCWs reporting psychological distress after DWM completion were invited to continue to PM+. The primary endpoint was self-reported anxiety/depression symptoms (Patient Health Questionnaire-Anxiety and Depression Scale) at week 21. Findings Between 3 November 2021 and 31 March 2022, 115 participants were randomised to stepped care and 117 to eCAU (86% women, mean age 37.5). The intervention showed a greater decrease in anxiety/depression symptoms compared with eCAU at the primary endpoint (baseline-adjusted difference 4.4, 95% CI 2.1 to 6.7; standardised effect size 0.8, 95% CI 0.4 to 1.2). No serious adverse events occurred. Conclusions Brief stepped-care psychological interventions reduce anxiety and depression during a period of stress among HCWs. Clinical implications Our results can inform policies and actions to protect the mental health of HCWs during major health crises and are potentially rapidly replicable in other settings where workers are affected by global emergencies

    A Major Role for the Plasmodium falciparum ApiAP2 Protein PfSIP2 in Chromosome End Biology

    Get PDF
    The heterochromatic environment and physical clustering of chromosome ends at the nuclear periphery provide a functional and structural framework for antigenic variation and evolution of subtelomeric virulence gene families in the malaria parasite Plasmodium falciparum. While recent studies assigned important roles for reversible histone modifications, silent information regulator 2 and heterochromatin protein 1 (PfHP1) in epigenetic control of variegated expression, factors involved in the recruitment and organization of subtelomeric heterochromatin remain unknown. Here, we describe the purification and characterization of PfSIP2, a member of the ApiAP2 family of putative transcription factors, as the unknown nuclear factor interacting specifically with cis-acting SPE2 motif arrays in subtelomeric domains. Interestingly, SPE2 is not bound by the full-length protein but rather by a 60kDa N-terminal domain, PfSIP2-N, which is released during schizogony. Our experimental re-definition of the SPE2/PfSIP2-N interaction highlights the strict requirement of both adjacent AP2 domains and a conserved bipartite SPE2 consensus motif for high-affinity binding. Genome-wide in silico mapping identified 777 putative binding sites, 94% of which cluster in heterochromatic domains upstream of subtelomeric var genes and in telomere-associated repeat elements. Immunofluorescence and chromatin immunoprecipitation (ChIP) assays revealed co-localization of PfSIP2-N with PfHP1 at chromosome ends. Genome-wide ChIP demonstrated the exclusive binding of PfSIP2-N to subtelomeric SPE2 landmarks in vivo but not to single chromosome-internal sites. Consistent with this specialized distribution pattern, PfSIP2-N over-expression has no effect on global gene transcription. Hence, contrary to the previously proposed role for this factor in gene activation, our results provide strong evidence for the first time for the involvement of an ApiAP2 factor in heterochromatin formation and genome integrity. These findings are highly relevant for our understanding of chromosome end biology and variegated expression in P. falciparum and other eukaryotes, and for the future analysis of the role of ApiAP2-DNA interactions in parasite biology

    Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data

    Get PDF
    Tropical forest ecosystems are undergoing rapid transformation as a result of changing environmental conditions and direct human impacts. However, we cannot adequately understand, monitor or simulate tropical ecosystem responses to environmental changes without capturing the high diversity of plant functional characteristics in the species-rich tropics. Failure to do so can oversimplify our understanding of ecosystems responses to environmental disturbances. Innovative methods and data products are needed to track changes in functional trait composition in tropical forest ecosystems through time and space. This study aimed to track key functional traits by coupling Sentinel-2 derived variables with a unique data set of precisely located in-situ measurements of canopy functional traits collected from 2434 individual trees across the tropics using a standardised methodology. The functional traits and vegetation censuses were collected from 47 field plots in the countries of Australia, Brazil, Peru, Gabon, Ghana, and Malaysia, which span the four tropical continents. The spatial positions of individual trees above 10 cm diameter at breast height (DBH) were mapped and their canopy size and shape recorded. Using geo-located tree canopy size and shape data, community-level trait values were estimated at the same spatial resolution as Sentinel-2 imagery (i.e. 10 m pixels). We then used the Geographic Random Forest (GRF) to model and predict functional traits across our plots. We demonstrate that key plant functional traits can be accurately predicted across the tropicsusing the high spatial and spectral resolution of Sentinel-2 imagery in conjunction with climatic and soil information. Image textural parameters were found to be key components of remote sensing information for predicting functional traits across tropical forests and woody savannas. Leaf thickness (R2 = 0.52) obtained the highest prediction accuracy among the morphological and structural traits and leaf carbon content (R2 = 0.70) and maximum rates of photosynthesis (R2 = 0.67) obtained the highest prediction accuracy for leaf chemistry and photosynthesis related traits, respectively. Overall, the highest prediction accuracy was obtained for leaf chemistry and photosynthetic traits in comparison to morphological and structural traits. Our approach offers new opportunities for mapping, monitoring and understanding biodiversity and ecosystem change in the most species-rich ecosystems on Earth

    PRISMA for abstracts: best practice for reporting abstracts of systematic reviews in Endodontology

    Get PDF
    An abstract is a brief overview of a scientific, clinical or review manuscript as well as a stand‐alone summary of a conference abstract. Scientists, clinician–scientists and clinicians rely on the summary information provided in the abstracts of systematic reviews to assist in subsequent clinical decision‐making. The Preferred Reporting Items for Systematic Reviews and Meta‐Analyses (PRISMA) for Abstracts checklist was developed to improve the quality, accuracy and completeness of abstracts associated with systematic reviews and meta‐analyses. The PRISMA for Abstracts checklist provides a framework for authors to follow, which helps them provide in the abstract the key information from the systematic review that is required by stakeholders. The PRISMA for Abstracts checklist contains 12 items (title, objectives, eligibility criteria, information sources, risk of bias, included studies, synthesis of results, description of the effect, strength and limitations, interpretation, funding and systematic review registration) under six sections (title, background, methods, results, discussion, other). The current article highlights the relevance and importance of the items in the PRISMA for Abstracts checklist to the specialty of Endodontology, while offering explanations and specific examples to assist authors when writing abstracts for systematic reviews when reported in manuscripts or submitted to conferences. Strict adherence to the PRISMA for Abstracts checklist by authors, reviewers and journal editors will result in the consistent publication of high‐quality abstracts within Endodontology
    corecore