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1 Introduction
Let HN be the space RN ×R

N ×R equipped with the following group operation:

η ◦ η′ = (x, y, t) ◦ (
x′, y′, t′

)
=

(
x + x′, y + y′, t + t′ + 

(
x′ · y – x · y′)),

where ‘·’ denotes the usual inner-product inRN . This operation endowsHN with the struc-
ture of a Lie group. The vector fields X, . . . ,XN , Y, . . . ,YN , T , given by

Xj =
∂

∂xj
+ yj

∂

∂t
, Yj =

∂

∂yj
– xj

∂

∂t
, T =

∂

∂t
,

form a basis for the tangent space at η = (x, y, t).

Definition . The Heisenberg Laplacian is by definition

�H =
N∑
j=

(
X
j + Y 

j
)
,

and let ∇Hu denote the N-vector (Xu, . . . ,XNu,Yu, . . . ,YNu).

Definition . The space S, (�) is defined as the completion of C∞
 (�) in the norm

‖u‖
S,

=
∫

�

N∑
j=

(|Xju| + |Yju|) = ∫
�

|∇Hu|.

Some existence and nonexistence for the semilinear equations or systems on theHeisen-
berg group have been studied by Garofalo, Lanconelli and Niu, see [, ], etc.
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In this paper, we study the problems on the existence and multiplicity of solutions for
the system

⎧⎨
⎩–�H

( u
v
)
= λ

( a(x) b(x)
b(x) d(x)

)( u
v
)
–

( f (x,u,v)
g(x,u,v)

)
, x ∈ �,

u = v = , x ∈ ∂�,
(.)

where � ⊆ H
N is a bounded smooth domain, a,b,d ∈ C(�,R) and f , g ∈ C(� ×R

,R).
Moreover, we assume that there is some function F(x,u, v) ∈ C(�×R

,R) such that∇F =( f
g
)
. Here ∇F denotes the gradient in the variable u and v, i.e., ∂F

∂u = f , ∂F
∂v = g .

In fact, the condition in R
N was studied by da Silva; we can see []. In this paper we

study the problem on the Heisenberg group H
N . The elliptic problems at resonance have

been studied by many authors; see [–].
We use the variation methods to solve problem (.). Finding weak solutions of (.)

in E = S, (�) × S, (�) is equivalent to finding critical points of the C functional given
by

I(h) =


‖h‖ – 



∫
�

〈Ah,h〉 +
∫

�

F(x,h), (.)

where

h ∈ E, h =

(
h()

h()

)
, ‖h‖ =

∫
�

∣∣∇Hh()
∣∣ + ∣∣∇Hh()

∣∣,

and 〈·, ·〉 denotes the usual inner product in R
.

We introduce the eigenvalue problem with weights. Let us denote by A the set of all
continuous, cooperative and symmetric matrices A of order , given by

A(x) =

(
a(x) b(x)
b(x) d(x)

)
,

where the functions a,b,d ∈ C(�,R) satisfy the following conditions:

(A) A(x) is cooperative, that is, b(x)≥ .
(A) There is an x ∈ � such that a(x) >  or d(x) > .

Given A ∈A(�), consider the weighted eigenvalue problem

⎧⎨
⎩–�H

( h()
h()

)
= λA(x)

( h()
h()

)
, in �,

h() = h() = , on ∂�,

ifA ∈A(�). By virtue of the spectral theory for compact operators, we obtain the sequence
of eigenvalues

 < λ < λ ≤ λ ≤ · · ·

http://www.boundaryvalueproblems.com/content/2013/1/157


Jia et al. Boundary Value Problems 2013, 2013:157 Page 3 of 10
http://www.boundaryvalueproblems.com/content/2013/1/157

such that λk → +∞ as k → ∞; see [, , ]. Here, each eigenvalue λk , k ≥  has finite
multiplicity, and we have


λk

= sup

{∫
�

〈Ah,h〉,‖h‖ = ,h ∈ V⊥
k–

}
,

where Vk = span{�, . . . ,�k} with k ≥ .

Remark .
() E = Vk ⊕V⊥

k for k ≥ .
() The following variational inequalities hold:

‖h‖ ≤ λk

∫
�

〈Ah,h〉, ∀h ∈ Vk ,k ≥ , (.)

‖h‖ ≥ λk+

∫
�

〈Ah,h〉, ∀h ∈ V⊥
k ,k ≥ . (.)

The variational inequalities will be used in the next section. We would like to mention
that the � is positive in �. In the paper, without loss of generality, we assume that λ = .
We now state the assumptions and the main results in this paper. Firstly, we define the

following functions:

⎧⎨
⎩T+ = lim inf(u,v)→(∞,∞) F(x,u, v), S+ = lim sup(u,v)→(∞,∞) F(x,u, v),

T– = lim inf(u,v)→(–∞,–∞) F(x,u, v), S– = lim sup(u,v)→(–∞,–∞) F(x,u, v).
(.)

The above functions belong to L(�) and the limits are taken a.e. and uniformly in x ∈ �.
Now we make the following basic hypotheses:

(E) There exists k ∈ C(�) such that

lim
|h|→∞

∇F(x,h) = ,
∣∣F(x,h)∣∣ ≤ k(x), a.e. x ∈ �,∀h ∈R

.

(E) F(x,h)≥ 
 ( – λ)〈Ah,h〉 + b|�|–, b ≥ , ∀(x,h) ∈ � ×R

.
(E) 〈Ah,h〉 ≥ , ∀(x,h) ∈ � ×R

.
(E) There exist α ∈ (, ) and δ >  such that

F(x,h)≥  – α


〈Ah,h〉, ∀x ∈ � and |z| < δ.

(E)
∫
�
S+ ≤  and

∫
�
S– ≤ .

(E) There exists t ∈R such that

∫
�

F(x, t�) <min

{∫
�

T+,
∫

�

T–
}
.

(E) There are t– <  and t+ >  such that

∫
�

F
(
x, t± �

)
<min

{∫
�

T+,
∫

�

T–
}
.

http://www.boundaryvalueproblems.com/content/2013/1/157


Jia et al. Boundary Value Problems 2013, 2013:157 Page 4 of 10
http://www.boundaryvalueproblems.com/content/2013/1/157

We can prove that the associated functional J has the saddle geometry. Actually, we have
the following results.

Theorem . Let � ⊆ H
N be a bounded smooth domain, a(x),b(x),d(x) ∈ C(�,R) and

f (x,u, v), g(x,u, v) ∈ C(� ×R
,R). Assume that there is some function F(x,u, v) ∈ C(� ×

R
,R) such that ∂F

∂u = f , ∂F
∂v = g . Furthermore, if the conditions (E), (E), (E) are satisfied,

problem (.) has at least one solution z ∈ E.

Remark . For the hypotheses ∇F(x, , ) ≡  and F(x, , ) ≡ , problem (.) admits
the trivial solution (u, v) = . In this case, the main point is to assure the existence of non-
trivial solutions.

Theorem . Let � ⊆ H
N be a bounded smooth domain, a(x),b(x),d(x) ∈ C(�,R) and

f (x,u, v), g(x,u, v) ∈ C(� ×R
,R). Assume that there is some function F(x,u, v) ∈ C(� ×

R
,R) such that ∂F

∂u = f , ∂F
∂v = g . Furthermore, if the conditions (E), (E), (E), (E) and (E)

are satisfied, then problem (.) has at least two nontrivial solutions.

Theorem . Let � ⊆ H
N be a bounded smooth domain, a(x),b(x),d(x) ∈ C(�,R) and

f (x,u, v), g(x,u, v) ∈ C(� ×R
,R). Assume that there is some function F(x,u, v) ∈ C(� ×

R
,R) such that ∂F

∂u = f , ∂F
∂v = g . Furthermore, if the conditions (E), (E), (E), (E), (E) and

(E) are satisfied, then problem (.) has at least three nontrivial solutions.

2 Preliminaries and fundamental lemmas
In this section, we prove some lemmas needed in the proof of our main theorems.
We first introduce the Folland-Stein embedding theorem (see []) as follows.

Lemma . Let� ⊆H
N be a bounded domain and let Q = N +.Then S, (�) compactly

embedding in Lp(�), where  ≤ p < Q
Q– .

To establish Lemmas . and ., we introduce the following corollary of the Ekeland
variation principle (see []).

Lemma . X is a metric space, I ∈ C(X,R) is bounded from below, which satisfies the
(PS)c condition, then c = infx∈X E(x) is a critical value of E.

Next, we describe some results under the geometry for the functional I .

Lemma . Under hypotheses (E) and (E), the functional I has the following saddle ge-
ometry:
(L-) I(h) → ∞ if ‖h‖ → ∞ with h ∈ V⊥

 .
(L-) There is α ∈R such that I(h) ≤ α, ∀z ∈ V.
(L-) I(h) ≥ b, ∀z ∈ V⊥

 .

Proof (L-). From (.), (.) we have

I(h) ≥ 


(
 –


λ

)
‖h‖ +

∫
�

F(x,h), h ∈ V⊥
 .

Using (E), we have J(h) → ∞, as ‖h‖ → ∞.

http://www.boundaryvalueproblems.com/content/2013/1/157
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(L-). By simple calculation, we get

I(h) =
∫

�

F(x,h), h ∈ V.

By using (E), we have

I(h) =
∫

�

F(x,h)≤
∫

�

k(x).

So, we choose α =
∫
�
k(x).

(L-). By (E) and the variational inequality (.), we have

I(h) =


‖h‖ – 



∫
�

〈Ah,h〉 +
∫

�

F(x,h)

≥ 

‖h‖ – λ



∫
�

〈Ah,h〉 + b

≥ b, ∀z ∈ V⊥
 ,

the proof of this lemma is completed. �

Next, we prove the Palais-Smale conditions at some levels for the functional I . We recall
that I : E → R is said to satisfy the Palais-Smale conditions at the level c ∈R ((PS)c in short)
if any sequence {hn} ⊆ E such that

I(hn) → c, I ′(hn) → ,

as n → ∞, possesses a convergent subsequence in E. Moreover, we say that I satisfies the
(PS) conditions when we have (PS)c for all c ∈ R.

Lemma . Assume that the condition (E) holds. Then the functional I has the (PS)c
conditions whenever c <min{∫

�
T+,

∫
�
T–} or c >max{∫

�
S+,

∫
�
S–}.

Proof Weonly prove the condition for all c <min{∫
�
T+,

∫
�
T–}. For the case c >max{∫

�
S+,∫

�
S–}, we can use similar methods.
. Boundedness of the (PS) sequence.
The proof is by contradiction. Suppose that there exists a (PS)c unbounded sequence

{hn} ∈ E such that c <min{∫
�
T+,

∫
�
T–}. For the ease of notation and without loss of gen-

erality, we assume that
‖hn‖ → ∞,
I(hn) → c,
I ′(hn) → , n→ ∞.

We define hn = hn
‖hn‖ , hence there is an h ∈ E with the following properties:

hn ⇀ h in E,
hn → h in Lp(�)× Lp(�), where  ≤ p < ∗ and ∗ = N+

N ,
hn → h a.e. in �.

http://www.boundaryvalueproblems.com/content/2013/1/157
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For any � ∈ E, obviously I′(hn)�
‖hn‖ → . By simple calculation, it is easy to obtain

I ′(hn)� =
∫

�

〈∇Hhn,∇H�〉 –
∫

�

〈Ahn,�〉 +
∫

�

〈∇F(x,hn),�
〉
,

where hn =
( h()n
h()n

)
, � =

(
�()

�()

)
. We have

I ′(hn)�
‖hn‖ =

∫
�

〈∇Hhn,∇H�〉 –
∫

�

〈Ahn,�〉 +
∫
�
〈∇F(x,hn),�〉

‖hn‖ →  as n→ ∞.

From the convergence of {hn}, we have
∫

�

〈∇Hh,∇H�〉 =
∫

�

〈Ah,�〉.

We see that λ = , and by the definition of λ, we obtain that h = ±�. So, we suppose
initially that h = �. Because � is positive, i.e., �()

 > , �()
 > , it is obvious that h()n →

∞, h()n → ∞, ∀x ∈ � as n→ ∞.
Hence, we can take hn = tn� +ωn, where {tn} ∈R, {ωn} ∈ V⊥

 , and we have

I(hn) =


‖tn� +ωn‖ – 



∫
�

〈
A(tn� +ωn), tn� +ωn

〉
+

∫
�

F(x,hn)

=


‖ωn‖ –

∫
�

〈Aωn,ωn〉 +
∫

�

F(x,hn).

Using (.), we obtain

I(hn) ≥ 


(
 –


λ

)
‖ωn‖ +

∫
�

F(x,hn). (.)

Since I(hn) → c, it is easy to obtain that the sequence {ωn} is bounded. On the other
hand, because of ‖hn‖ → ∞, on a subsequence |tn| → ∞, without loss of generality, we
assume tn → –∞.
Now, using Hölder’s inequality and (E), we have

∣∣∣∣
∫

�

∇F(x,hn)ωn

∣∣∣∣ ≤ C
(∫

�

∣∣∇F(x,hn)
∣∣) 


.

Thus, applying the dominated convergence theorem, we conclude that

lim
n→∞

∫
�

∇F(x,hn)ωn = . (.)

On the other hand,

I ′(hn)ωn =
∫

�

〈∇Hhn,∇Hωn〉 –
∫

�

〈Ahn,ωn〉 +
∫

�

〈∇F(x,hn),ωn
〉

= ‖ωn‖ –
∫

�

〈Ahn,ωn〉 +
∫

�

〈∇F(x,hn),ωn
〉
.

http://www.boundaryvalueproblems.com/content/2013/1/157
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Using (.), (.), we obtain

(
 –


λ

)
‖ωn‖ ≤ ∣∣I ′(hn)ωn

∣∣ + ∣∣∣∣
∫

�

〈∇F(x,hn),ωn
〉∣∣∣∣ → 

as n→ ∞. Therefore, by variational inequalities (.) and (.), we obtain that

‖ωn‖ –
∫

�

〈Ahn,ωn〉 →  as n→ ∞.

Consequently, by virtue of Fatou’s lemma and (E), we have

c = lim
n→∞

(


‖ωn‖ –

∫
�

〈Aωn,ωn〉 +
∫

�

F(x,hn)
)
= lim inf

n→∞

∫
�

F(x, tn� +ωn)

≥
∫

�

lim inf
n→∞ F(x, tn� +ωn) =

∫
�

T–,

which contradicts the condition c < min{∫
�
T+,

∫
�
T–}. Hence, the (PS)c sequence is

bounded.
. Various convergence of {hn}.
Since {hn} is a bounded sequence, there is an h ∈ E with the following properties:
hn ⇀ h in E,
hn → h in Lp(�)× Lp(�), where  ≤ p < ∗ and ∗ = N+

N ,
hn → h a.e. in �.

. {hn} convergence to h in E.
From the definition of (PS)c sequence, we have, as n→ ∞,

I ′(hn)h =
∫

�

〈∇Hhn,∇Hh〉 –
∫

�

〈Ahn,h〉 +
∫

�

〈∇F(x,hn),h
〉 → ,

I ′(hn)hn =
∫

�

|∇Hhn| –
∫

�

〈Ahn,hn〉 +
∫

�

〈∇F(x,hn),hn
〉 → .

By Fatou’s lemma and the above convergence of {hn}, it is easy to show that

∫
�

〈Ahn,h〉 →
∫

�

〈Ah,h〉,
∫

�

〈∇F(x,hn),h
〉 → ∫

�

〈∇F(x,h),h
〉
,

∫
�

〈Ahn,hn〉 →
∫

�

〈Ah,h〉,
∫

�

〈∇F(x,hn),hn
〉 → ∫

�

〈∇F(x,h),h
〉

as n→ ∞. Hence, we have
∫

�

〈∇Hhn,∇Hh〉 →
∫

�

〈Ah,h〉 –
∫

�

〈∇F(x,h),h
〉

as n→ ∞, (.)
∫

�

|∇Hhn| →
∫

�

〈Ah,h〉 –
∫

�

〈∇F(x,h),h
〉

as n → ∞. (.)

http://www.boundaryvalueproblems.com/content/2013/1/157
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By weak convergence, we have

∫
�

〈∇Hhn,∇Hh〉 →
∫

�

〈∇Hh,∇Hh〉 as n→ ∞. (.)

Using (.), (.) and (.), by simple calculation, we obtain

∫
�

|∇Hhn –∇Hh| →  as n→ ∞.

The proof is completed. �

Lemma . Suppose that (E) and (E) are satisfied. Then the origin is a local minimum
for the functional I.

Proof Using (E), we can choose p ∈ (, ∗) and a constant C >  such that

F(x,h)≥  – α


〈Ah,h〉 –C|h|p, ∀(x,h) ∈ � ×R

.

Consequently, we have

I(h) =


‖h‖ – 



∫
�

〈Ah,h〉 +
∫

�

F(x,h)≥ 

( – α)‖h‖ –C

∫
�

|h|p

≥ 

( – α)‖h‖ –C‖h‖p ≥ 


( – α)‖h‖, ‖h‖ < ρ,

where ρ is small enough and  < ρ < t, t is provided by (E). Therefore the proof has
been completed. �

To complete the mountain pass geometry, we prove the following result.

Lemma . Let the hypotheses (E), (E) and (E) hold. Then there exist h ∈ E and ρ > 
such that I(h) <  and ‖h‖ > ρ .

Proof Using (E) and (E), we take h = t�, where t is provided by (E). Thus, we obtain

I(t�) =


‖t�‖ – 



∫
�

〈
A(t�), t�

〉
+

∫
�

F(x, t�),

=
∫

�

F(x, t�) <min

{∫
�

T+,
∫

�

T–
}
<max

{∫
�

S+,
∫

�

S–
}

≤ ,

and ‖t�‖ = t. If we take  < ρ < t, then the conclusion follows. �

Lemma . Under hypotheses (E), (E) and (E), problem (.) has at least one nontrivial
solution h ∈ E.Moreover, h has negative energy, i.e., J(h) < .

Proof By (E) and (.), we obtain

I(h) =


‖h‖ – 



∫
�

〈Ah,h〉 +
∫

�

F(x,h)≥
∫

�

F(x,h)≥ –
∫

�

k(x).

http://www.boundaryvalueproblems.com/content/2013/1/157
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Therefore, the functional I is bounded below. In this case, we would like to mention that
I has the (PS)c conditions with c = inf{I(h) : h ∈ E}. For seeing this, by Lemma ., we take
t ∈R provided by (E) we can obtain

c≤ I(t�) =
∫

�

F(x, t�) <min

{∫
�

T+,
∫

�

T–
}

≤ .

Consequently, applying Lemma ., we have one critical point h ∈ E such that I(h) =
inf{I(h) : h ∈ E} ≤ I(t�) < . The proof of this lemma is completed. �

To prove Theorem ., we establish the following lemma.

Lemma . Assume that the conditions (E), (E), (E) and (E) hold. Then problem (.)
has at least two nontrivial solutions with negative energy.

Proof Define

M+ =
{
t� +ω, t ≥ ,ω ∈ V⊥


}
, M– =

{
t� +ω, t ≤ ,ω ∈ V⊥


}
.

We have ∂M+ = ∂M– = V⊥
 . Hence, weminimize the functional I restricted toM+ andM–.

Firstly, we consider the functionals I± = I|M± . Using Lemma ., I± possesses the (PS)c
conditions whenever c <min{∫

�
T+,

∫
�
T–}. Therefore, we obtain that I± satisfies the (PS)c

conditions with c± = inf{I±(h) : h ∈M±}.
In this way, by using Lemma . for the functional I±, we obtain two critical points

which we denote by h+ and h– , respectively. Thus, we have c+ = I+(h+) = infh∈M+{I(h)} and
c– = I–(h–) = infh∈M–{I(h)}.
Moreover, we affirm that h+ and h– are nonzero critical points. To see this, from (E)

and (E), we obtain that

I±
(
h±

) ≤ I±

(
t± �

)
=

∫
�

F
(
x, t± �

)
<min

{∫
�

T+,
∫

�

T–
}

≤ ,

and I restricted to V⊥
 is nonnegative. More specifically, given ω ∈ V⊥

 , using (L-) in
Lemma ., we have

I(ω) ≥ b ≥ . (.)

Next, we prove that h+ and h– are distinct. The proof of this affirmation is by contradic-
tion. If h+ = h– , then h+ = h– ∈ V⊥

 . Using (.), we obtain I(h+) <  ≤ I(h+). Therefore, we
have a contradiction. Consequently, we get h+ �= h– . Thus problem (.) has at least two
nontrivial solutions. Moreover, these solutions have negative energy. �

3 Proof of main theorems
In this section, we prove Theorem ., Theorem . and Theorem ..

Proof of Theorem . From Lemma ., the functional I satisfies the (PS)c conditions for
some levels c ∈ R. Set E = V ⊕ V⊥

 , where V = span{�}. Using Lemma ., we get that

http://www.boundaryvalueproblems.com/content/2013/1/157
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the functional I satisfies the saddle point geometry (see [], Theorem .). This implies
that I has one critical point h ∈ E. Theorem . is proved. �

Proof of Theorem . From Lemma . and Lemma ., we know that the functional I
satisfies the geometric conditions of themountain pass theorem.Moreover, the functional
I satisfies the (PS)c conditions for all c ≥ . Thus, we have a solution h ∈ E given by the
mountain pass theorem. Obviously, the solution h satisfies I(h) > .
On the other hand, by Lemma ., we get another solution h and I(h) < . It follows

that problem (.) has at least two nontrivial solutions. The proof is completed. �

Proof of Theorem . Since the conditions (E), (E), (E) and (E) imply that Lemma .
and Lemma . hold. Thus, we have one solution h which satisfies I(h) > .
On the other hand, using Lemma ., we obtain two distinct critical points h±

 such that
I(h±

 ) < . Therefore, we obtain that problem (.) has at least three nontrivial solutions.
The proof is completed. �
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