969 research outputs found

    Can stellar activity make a planet seem misaligned?

    Full text link
    Several studies have shown that the occultation of stellar active regions by the transiting planet can generate anomalies in the high-precision transit light curves, and these anomalies may lead to an inaccurate estimate of the planetary parameters (e.g., the planet radius). Since the physics and geometry behind the transit light curve and the Rossiter- McLaughlin effect (spectroscopic transit) are the same, the Rossiter-McLaughlin observations are expected to be affected by the occultation of stellar active regions in a similar way. In this paper we perform a fundamental test on the spin-orbit angles as derived by Rossiter-McLaughlin measurements, and we examine the impact of the occultation of stellar active regions by the transiting planet on the spin-orbit angle estimations. Our results show that the inaccurate estimation on the spin-orbit angle due to stellar activity can be quite significant (up to 30 degrees), particularly for the edge-on, aligned, and small transiting planets. Therefore, our results suggest that the aligned transiting planets are the ones that can be easily misinterpreted as misaligned owing to the stellar activity. In other words, the biases introduced by ignoring stellar activity are unlikely to be the culprit for the highly misaligned systems.Comment: 8 pages, 8 figures, accepted for publication in Astronomy & Astrophysic

    Impact of micro-telluric lines on precise radial velocities and its correction

    Full text link
    Context: In the near future, new instruments such as ESPRESSO will arrive, allowing us to reach a precision in radial-velocity measurements on the order of 10 cm/s. At this level of precision, several noise sources that until now have been outweighed by photon noise will start to contribute significantly to the error budget. The telluric lines that are not neglected by the masks for the radial velocity computation, here called micro-telluric lines, are one such noise source. Aims: In this work we investigate the impact of micro-telluric lines in the radial velocities calculations. We also investigate how to correct the effect of these atmospheric lines on radial velocities. Methods: The work presented here follows two parallel lines. First, we calculated the impact of the micro-telluric lines by multiplying a synthetic solar-like stellar spectrum by synthetic atmospheric spectra and evaluated the effect created by the presence of the telluric lines. Then, we divided HARPS spectra by synthetic atmospheric spectra to correct for its presence on real data and calculated the radial velocity on the corrected spectra. When doing so, one considers two atmospheric models for the synthetic atmospheric spectra: the LBLRTM and TAPAS. Results: We find that the micro-telluric lines can induce an impact on the radial velocities calculation that can already be close to the current precision achieved with HARPS, and so its effect should not be neglected, especially for future instruments such as ESPRESSO. Moreover, we find that the micro-telluric lines' impact depends on factors, such as the radial velocity of the star, airmass, relative humidity, and the barycentric Earth radial velocity projected along the line of sight at the time of the observation.Comment: Accepted in A&

    The contribution of secondary eclipses as astrophysical false positives to exoplanet transit surveys

    Full text link
    We investigate in this paper the astrophysical false-positive configuration in exoplanet-transit surveys that involves eclipsing binaries and giant planets which present only a secondary eclipse, as seen from the Earth. To test how an eclipsing binary configuration can mimic a planetary transit, we generate synthetic light curve of three examples of secondary-only eclipsing binary systems that we fit with a circular planetary model. Then, to evaluate its occurrence we model a population of binaries in double and triple system based on binary statistics and occurrence. We find that 0.061% +/- 0.017% of main-sequence binary stars are secondary-only eclipsing binaries mimicking a planetary transit candidate down to the size of the Earth. We then evaluate the occurrence that an occulting-only giant planet can mimic an Earth-like planet or even smaller planet. We find that 0.009% +/- 0.002% of stars harbor a giant planet that present only the secondary transit. Occulting-only giant planets mimic planets smaller than the Earth that are in the scope of space missions like Kepler and PLATO. We estimate that up to 43.1 +/- 5.6 Kepler Objects of Interest can be mimicked by this new configuration of false positives, re-evaluating the global false-positive rate of the Kepler mission from 9.4% +/- 0.9% to 11.3% +/- 1.1%. We note however that this new false-positive scenario occurs at relatively long orbital period compared with the median period of Kepler candidates.Comment: 9 pages, 4 figures, accepted for publication in A&

    From stellar to planetary composition: Galactic chemical evolution of Mg/Si mineralogical ratio

    Get PDF
    The main goal of this work is to study element ratios that are important for the formation of planets of different masses. We study potential correlations between the existence of planetary companions and the relative elemental abundances of their host stars. We use a large sample of FGK-type dwarf stars for which precise Mg, Si, and Fe abundances have been derived using HARPS high-resolution and high-quality data. A first analysis of the data suggests that low-mass planet host stars show higher [Mg/Si] ratios, while giant planet hosts present [Mg/Si] that is lower than field stars. However, we found that the [Mg/Si] ratio significantly depends on metallicity through Galactic chemical evolution. After removing the Galactic evolution trend only the difference in the [Mg/Si] elemental ratio between low-mass planet hosts and non-hosts was present in a significant way. These results suggests that low-mass planets are more prevalent around stars with high [Mg/Si]. Our results demonstrate the importance of Galactic chemical evolution and indicate that it may play an important role in the planetary internal structure and composition.Comment: Accepted by A&A (Letter to the Editor

    The first radial velocity measurements of a microlensing event: no evidence for the predicted binary

    Full text link
    The gravitational microlensing technique allows the discovery of exoplanets around stars distributed in the disk of the galaxy towards the bulge. However, the alignment of two stars that led to the discovery is unique over the timescale of a human life and cannot be re-observed. Moreover, the target host is often very faint and located in a crowded region. These difficulties hamper and often make impossible the follow-up of the target and study of its possible companions. Gould et al. (2013) predicted the radial-velocity curve of a binary system, OGLE-2011-BLG-0417, discovered and characterised from a microlensing event by Shin et al. (2012). We used the UVES spectrograph mounted at the VLT, ESO to derive precise radial-velocity measurements of OGLE-2011-BLG-0417. To gather high-precision on faint targets of microlensing events, we proposed to use the source star as a reference to measure the lens radial velocities. We obtained ten radial velocities on the putative V=18 lens with a dispersion of ~100 m/s, spread over one year. Our measurements do not confirm the microlensing prediction for this binary system. The most likely scenario is that the assumed V=18 mag lens is actually a blend and not the primary lens that is 2 magnitude fainter. Further observations and analyses are needed to understand the microlensing observation and infer on the nature and characteristics of the lens itself.Comment: submitted on 3rd June 2015 to A&ALette

    Patient-controlled analgesia com morfina endovenosa no tratamento da dor aguda

    Get PDF
    INTRODUÇÃO: O manuseio da dor aguda (DA) é um desafio na Anestesiologia. PCA (patient-controlled analgesia) com opióide endovenoso (ev) permite administração de opióide on-demand, de forma intermitente, controlada pelo doente. No nosso serviço é usada PCA de morfina ev (protocolo mais usado: bólus 1mg, lockout 7 minutos, sem perfusão contínua). O conhecimento da forma como é utilizada permite-nos melhorar protocolos. OBJETIVOS: Avaliar o uso de PCA com morfina ev no nosso hospital e caraterizar a população de doentes considerando três grupos no que respeita ao consumo total de morfina. MATERIAL E MÉTODOS: Avaliação retrospetiva do processo clínico eletrónico dos doentes referenciados à Unidade de Dor Aguda (UDA) do nosso hospital nos últimos 2 anos. Consulta dos registos da UDA e fichas anestésicas de todos os doentes com analgesia com morfina ev por PCA. Registo de sexo, idade, estado físico ASA, tipo de dor, intervenção cirúrgica, perfusão contínua e total de morfina considerando grupos: 1 (40mg). Excluídos doentes com registos incompletos. Aplicados teste Qui quadrado e índice de correlação de Pearson. Resultados apresentados em percentagem (%) e média ± desvio padrão. Significância estatística P<0.05. RESULTADOS E DISCUSSÃO: Excluídos 3 doentes por registos incompletos. Analisados 930. Masculino (M) 51.1%, Idade - 50.7± 19.6 anos, maioritariamente ASA II - 46.1%. Tempo com PCA 2.7 ± 2.5 dias. Dor pós-operatória (DPO) - 95.5%, dor isquémica (DI) - 1.8%, dor traumática (DT) - 1.2%, outra (O) - 1.6%. Ratio bólus pedidos/administrados (P/A) 2.08 ± 3 (50%), encontrando-se relação com a idade: R=0.128 (P<0.01). Perfusão contínua - 4.2% dos casos sendo GRUPO 1- 2.7%; GRUPO 2 - 5.4% e GRUPO 3 - 91.9%. Consumo de morfina - GRUPO 1: DPO - 31.2%, mais frequente cirurgia membro superior - 67.4%; DI - 6.3%; DT - 9.1%; O - 8.3%. GRUPO 2: DPO - 25.4%, mais frequente cirurgia cabeça e pescoço - 40.0%; DI - 6.3%; DT - 18.2%; O - 16.7%. GRUPO 3: DPO - 43.4%, mais frequente cirurgia vascular membro inferior - 82.1% e cirurgia de escoliose - 74.2%; DI - 87.5%; DT - 72.7%; O - 75%. As diferenças de consumos são estatisticamente significativas entre o tipo de dor, intervenção cirúrgica, presença ou não perfusão contínua e classificação ASA (P<0.001). Não existe diferença entre sexo. Dias com PCA, perfusão contínua e intervenção cirúrgica têm importância preditiva no consumo total de morfina (aplicação do modelo linear). CONCLUSÃO: Os resultados mostram maior utilização da PCA na DPO. DI e DT surgem associadas a maior consumo total de morfina. Na DPO, o maior consumo de morfina verifica-se na cirurgia vascular do membro inferior e cirurgia de escoliose; cirurgias de cabeça e pescoço e membro superior estão associadas a menor consumo. O aumento do ratio P/A com a idad

    A new analysis of the WASP-3 system: no evidence for an additional companion

    Full text link
    In this work we investigate the problem concerning the presence of additional bodies gravitationally bounded with the WASP-3 system. We present eight new transits of this planet and analyse all the photometric and radial velocity data published so far. We did not observe significant periodicities in the Fourier spectrum of the observed minus calculated (O-C) transit timing and radial velocity diagrams (the highest peak having false-alarm probabilities of 56 per cent and 31 per cent, respectively) or long-term trends. Combining all the available information, we conclude that the radial velocity and transit timing techniques exclude, at 99 per cent confidence limit, any perturber more massive than M \gtrsim 100 M_Earth with periods up to 10 times the period of the inner planet. We also investigate the possible presence of an exomoon on this system and determined that considering the scatter of the O-C transit timing residuals a coplanar exomoon would likely produce detectable transits. This hypothesis is however apparently ruled out by observations conducted by other researchers. In case the orbit of the moon is not coplanar the accuracy of our transit timing and transit duration measurements prevents any significant statement. Interestingly, on the basis of our reanalysis of SOPHIE data we noted that WASP-3 passed from a less active (log R'_hk=-4.95) to a more active (log R'_hk=-4.8) state during the 3 yr monitoring period spanned by the observations. Despite no clear spot crossing has been reported for this system, this analysis claims for a more intensive monitoring of the activity level of this star in order to understand its impact on photometric and radial velocity measurements.Comment: MNRAS accepted (14/08/2012

    PASTIS: Bayesian extrasolar planet validation II. Constraining exoplanet blend scenarios using spectroscopic diagnoses

    Full text link
    The statistical validation of transiting exoplanets proved to be an efficient technique to secure the nature of small exoplanet signals which cannot be established by purely spectroscopic means. However, the spectroscopic diagnoses are providing us with useful constraints on the presence of blended stellar contaminants. In this paper, we present how a contaminating star affects the measurements of the various spectroscopic diagnoses as function of the parameters of the target and contaminating stars using the model implemented into the PASTIS planet-validation software. We find particular cases for which a blend might produce a large radial velocity signal but no bisector variation. It might also produce a bisector variation anti-correlated with the radial velocity one, as in the case of stellar spots. In those cases, the full width half maximum variation provides complementary constraints. These results can be used to constrain blend scenarios for transiting planet candidates or radial velocity planets. We review all the spectroscopic diagnoses reported in the literature so far, especially the ones to monitor the line asymmetry. We estimate their uncertainty and compare their sensitivity to blends. Based on that, we recommend the use of BiGauss which is the most sensitive diagnosis to monitor line-profile asymmetry. In this paper, we also investigate the sensitivity of the radial velocities to constrain blend scenarios and develop a formalism to estimate the level of dilution of a blended signal. Finally, we apply our blend model to re-analyse the spectroscopic diagnoses of HD16702, an unresolved face-on binary which exhibits bisector variations.Comment: Accepted for publication in MNRA

    Orbital and physical properties of planets and their hosts: new insights on planet formation and evolution

    Full text link
    We explore the relations between physical and orbital properties of planets and properties of their host stars to identify the main observable signatures of the formation and evolution processes of planetary systems. We use a large sample of FGK dwarf planet hosts with stellar parameters derived in a homogeneous way from the SWEET-Cat database to study the relation between stellar metallicity and position of planets in the period-mass diagram. In the second part we use all the RV-detected planets orbiting FGK stars to explore the role of planet-disk and planet-planet interaction on the evolution of orbital properties of planets with masses above 1MJup. We show that planets orbiting metal-poor stars have longer periods than those in metal-rich systems. This trend is valid for masses at least from 10MEarth to 4MJup. Earth-like planets orbiting metal-rich stars always show shorter periods (fewer than 20 days) than those orbiting metal-poor stars. We also found statistically significant evidence that very high mass giants have on average more eccentric orbits than giant planets with lower mass.Finally, we show that the eccentricity of planets with masses higher than 4MJup tends to be lower for planets with shorter periods. Our results suggest that the planets in the P-MP diagram are evolving differently because of a mechanism that operates over a wide range of planetary masses. This mechanism is stronger or weaker depending on the metallicity of the respective system. One possibility is that planets in metal-poor disks form farther out from their central star and/or they form later and do not have time to migrate as far as the planets in metal-rich systems. The trends and dependencies obtained for very high mass planetary systems suggest that planet-disk interaction is a very important and orbit-shaping mechanism for planets in the high-mass domain. Shortened.Comment: 8 pages, 4 figures and 1 table. Accepted for publication in A&

    Constraining planet structure from stellar chemistry: the cases of CoRoT-7, Kepler-10, and Kepler-93

    Get PDF
    We explore the possibility that the stellar relative abundances of different species can be used to constrain the bulk abundances of known transiting rocky planets. We use high resolution spectra to derive stellar parameters and chemical abundances for Fe, Si, Mg, O, and C in three stars hosting low mass, rocky planets: CoRoT-7, Kepler-10, and Kepler-93. These planets follow the same line along the mass-radius diagram, pointing toward a similar composition. The derived abundance ratios are compared with the solar values. With a simple stoichiometric model, we estimate the iron mass fraction in each planet, assuming stellar composition. We show that in all cases, the iron mass fraction inferred from the mass-radius relationship seems to be in good agreement with the iron abundance derived from the host star's photospheric composition. The results suggest that stellar abundances can be used to add constraints on the composition of orbiting rocky planets.Comment: A&A Letters, in pres
    • …
    corecore