We explore the possibility that the stellar relative abundances of different
species can be used to constrain the bulk abundances of known transiting rocky
planets. We use high resolution spectra to derive stellar parameters and
chemical abundances for Fe, Si, Mg, O, and C in three stars hosting low mass,
rocky planets: CoRoT-7, Kepler-10, and Kepler-93. These planets follow the same
line along the mass-radius diagram, pointing toward a similar composition. The
derived abundance ratios are compared with the solar values. With a simple
stoichiometric model, we estimate the iron mass fraction in each planet,
assuming stellar composition. We show that in all cases, the iron mass fraction
inferred from the mass-radius relationship seems to be in good agreement with
the iron abundance derived from the host star's photospheric composition. The
results suggest that stellar abundances can be used to add constraints on the
composition of orbiting rocky planets.Comment: A&A Letters, in pres