1,502 research outputs found

    Controlled release of free-falling test models

    Get PDF
    Releasing device, powered by a drill motor through an adjustable speed reducer, has a spinning release head with three retractable spring-loaded fingers. The fingers are retracted by manual triggering of a cable at the motor end of the unit

    Moving boundary approximation for curved streamer ionization fronts: Solvability analysis

    Get PDF
    The minimal density model for negative streamer ionization fronts is investigated. An earlier moving boundary approximation for this model consisted of a "kinetic undercooling" type boundary condition in a Laplacian growth problem of Hele-Shaw type. Here we derive a curvature correction to the moving boundary approximation that resembles surface tension. The calculation is based on solvability analysis with unconventional features, namely, there are three relevant zero modes of the adjoint operator, one of them diverging; furthermore, the inner/outer matching ahead of the front has to be performed on a line rather than on an extended region; and the whole calculation can be performed analytically. The analysis reveals a relation between the fields ahead and behind a slowly evolving curved front, the curvature and the generated conductivity. This relation forces us to give up the ideal conductivity approximation, and we suggest to replace it by a constant conductivity approximation. This implies that the electric potential in the streamer interior is no longer constant but solves a Laplace equation; this leads to a Muskat-type problem.Comment: 22 pages, 6 figure

    Kink Localization under Asymmetric Double-Well Potential

    Full text link
    We study diffuse phase interfaces under asymmetric double-well potential energies with degenerate minima and demonstrate that the limiting sharp profile, for small interface energy cost, on a finite space interval is in general not symmetric and its position depends exclusively on the second derivatives of the potential energy at the two minima (phases). We discuss an application of the general result to porous media in the regime of solid-fluid segregation under an applied pressure and describe the interface between a fluid-rich and a fluid-poor phase. Asymmetric double-well potential energies are also relevant in a very different field of physics as that of Brownian motors. An intriguing analogy between our result and the direction of the dc soliton current in asymmetric substrate driven Brownian motors is pointed out

    Tapasin gene polymorphism in systemic onset juvenile rheumatoid arthritis: a family-based case-control study

    Get PDF
    Juvenile rheumatoid arthritis (JRA) comprises a group of chronic systemic inflammatory disorders that primarily affect joints and can cause long-term disability. JRA is likely to be a complex genetic trait, or a series of such traits, with both genetic and environmental factors contributing to the risk for developing the disease and to its progression. The HLA region on the short arm of chromosome 6 has been intensively evaluated for genetic contributors to JRA, and multiple associations, and more recently linkage, has been detected. Other genes involved in innate and acquired immunity also map to near the HLA cluster on 6p, and it is possible that variation within these genes also confers risk for developing JRA. We examined the TPSN gene, which encodes tapasin, an endoplasmic reticulum chaperone that is involved in antigen processing, to elucidate its involvement, if any, in JRA. We employed both a case-control approach and the transmission disequilibrium test, and found linkage and association between the TPSN allele (Arg260) and the systemic onset subtype of JRA. Two independent JRA cohorts were used, one recruited from the Rheumatology Clinic at Cincinnati Children's Hospital Medical Center (82 simplex families) and one collected by the British Paediatric Rheumatology Group in London, England (74 simplex families). The transmission disequilibrium test for these cohorts combined was statistically significant (chi(2) = 4.2, one degree of freedom; P = 0.04). Linkage disequilibrium testing between the HLA alleles that are known to be associated with systemic onset JRA did not reveal linkage disequilibrium with the Arg260 allele, either in the Cincinnati systemic onset JRA cohort or in 113 Caucasian healthy individuals. These results suggest that there is a weak association between systemic onset JRA and the TPSN polymorphism, possibly due to linkage disequilibrium with an as yet unknown susceptibility allele in the centromeric part of chromosome 6

    Effects of pumping on entomopathogenic nematodes and temperature increase within a spray system

    Get PDF
    Exposure to hydrodynamic stresses and increased temperature during hydraulic agitation within a spray system could cause permanent damage to biological pesticides during spray application. Damage to a benchmark biopesticide, entomopathogenic nematodes (EPNs), was measured after a single passage through three different pump types (centrifugal, diaphragm, and roller) at operating pressures up to 828 kPa. No mechanical damage to the EPNs due to passage through the pumps was observed. Separate tests evaluated the effect of pump recirculation on temperature increase of water within a laboratory spray system (56.8-L spray tank) and a conventional-scale spray system (1136-L spray tank). A constant volume of water (45.4 L) was recirculated through each pump at 15.1 L/min within the laboratory spray system. After 2 h, the temperature increase for the centrifugal pump was 33.6 degrees C, and for the diaphragm and roller pumps was 8.5 degrees C and 11.2 degrees C, respectively. The centrifugal pump was also evaluated within the conventional spray system, under both a constant (757 L) and reducing volume scenario, resulting in an average temperature increase of 3.2 degrees C and 6.5 degrees C, respectively, during the 3-h test period. When comparing the number of recirculations for each test, the rate of temperature increase was the same for the conventional spray, system (for both the constant and reducing volume scenarios), while for the laboratory spray system the temperature increased at a greater rate, suggesting that the volume capacity of the spray tank is the primary factor influencing the temperature increase. Results from this study indicate that thermal influences during pump recirculation could be more detrimental to EPNs than mechanical stress. Results show that extensive recirculation of the tank mix can cause considerable increases in the liquid temperature. Diaphragm and roller pumps (low-capacity pumps) are better suited for use with biopesticides compared to the centrifugal pump, which was found to contribute significant heat to the spray system

    Finite to infinite steady state solutions, bifurcations of an integro-differential equation

    Get PDF
    We consider a bistable integral equation which governs the stationary solutions of a convolution model of solid--solid phase transitions on a circle. We study the bifurcations of the set of the stationary solutions as the diffusion coefficient is varied to examine the transition from an infinite number of steady states to three for the continuum limit of the semi--discretised system. We show how the symmetry of the problem is responsible for the generation and stabilisation of equilibria and comment on the puzzling connection between continuity and stability that exists in this problem

    Dynamical mechanism of atrial fibrillation: a topological approach

    Get PDF
    While spiral wave breakup has been implicated in the emergence of atrial fibrillation, its role in maintaining this complex type of cardiac arrhythmia is less clear. We used the Karma model of cardiac excitation to investigate the dynamical mechanisms that sustain atrial fibrillation once it has been established. The results of our numerical study show that spatiotemporally chaotic dynamics in this regime can be described as a dynamical equilibrium between topologically distinct types of transitions that increase or decrease the number of wavelets, in general agreement with the multiple wavelets hypothesis. Surprisingly, we found that the process of continuous excitation waves breaking up into discontinuous pieces plays no role whatsoever in maintaining spatiotemporal complexity. Instead this complexity is maintained as a dynamical balance between wave coalescence -- a unique, previously unidentified, topological process that increases the number of wavelets -- and wave collapse -- a different topological process that decreases their number.Comment: 15 pages, 14 figure

    Vestibular Evoked Myogenic Potential Testing Payment Policy Review for Clinicians and Payers

    Get PDF
    Purpose of review A recent American Academy of Neurology Evidence-Based Practice Guideline on vestibular myogenic evoked potential (VEMP) testing has described superior canal dehiscence syndrome (SCDS) and evaluated the merits of VEMP in its diagnosis. SCDS is an uncommon but now well-recognized cause of dizziness and auditory symptoms. This article familiarizes health care providers with this syndrome and the utility and shortcomings of VEMP as a diagnostic test and also explores payment policies for VEMP. Recent findings In carefully selected patients with documented history compatible with the SCDS, both high-resolution temporal bone CT scan and VEMP are valuable aids for diagnosis. Payers might be unfamiliar with both this syndrome and VEMP testing. Summary It is important to raise awareness of VEMP and its possible indications and the rationale for coverage of VEMP testing. Payers may not be readily receptive to VEMP coverage if this test is used in an undifferentiated manner for all common vestibular and auditory symptoms

    Drift- or Fluctuation-Induced Ordering and Self-Organization in Driven Many-Particle Systems

    Full text link
    According to empirical observations, some pattern formation phenomena in driven many-particle systems are more pronounced in the presence of a certain noise level. We investigate this phenomenon of fluctuation-driven ordering with a cellular automaton model of interactive motion in space and find an optimal noise strength, while order breaks down at high(er) fluctuation levels. Additionally, we discuss the phenomenon of noise- and drift-induced self-organization in systems that would show disorder in the absence of fluctuations. In the future, related studies may have applications to the control of many-particle systems such as the efficient separation of particles. The rather general formulation of our model in the spirit of game theory may allow to shed some light on several different kinds of noise-induced ordering phenomena observed in physical, chemical, biological, and socio-economic systems (e.g., attractive and repulsive agglomeration, or segregation).Comment: For related work see http://www.helbing.or
    corecore