2,007 research outputs found
Attitudes Toward Psychotropic Medications Among Psychotropic Medications Among Psychiatric Outpatients and the General Population
Attitudes and beliefs towards psychotropic medication were evaluated among psychiatric outpatients, patients seeking buprenorphine for substance abuse, and nonusers in a general population. The Drug Attitude Inventory scale (DAI-10) and the Beliefs about Medicines Questionnaire General (BMQ-G) were used to assess attitudes and beliefs of 49 participants. The general population had a negative attitude toward psychotropic medication and the psychiatric groups showed positive attitudes. Compliance and noncompliance were not associated with attitudes or beliefs toward psychotropic medication. Other findings include that females had less positive attitudes and beliefs towards psychotropic medication than males. The current findings expand and support research associated with substance abuse treatment of buprenorphine and attitudes toward psychotropic medication among psychiatric patients and the general population
The Biochemical Reactions of the Tribe Klebsielleae
M. A.Fife, W. H. Ewing, and B. R. Davis."June 1965."Includes bibliographical references (p. 42-43)
Causes of Imbalance and Abnormal Gait That May Be Misdiagnosed
Disorders of gait and balance are common in medicine and often lead to referral for neurologic evaluation. Because the maintenance of balance and normal gait are mediated by complex neurologic pathways as well as musculoskeletal, metabolic, and behavioral considerations, the list of possible contributing causes is very large. Much of the time, the history and neurologic examination reveal the underlying cause or causes. There are instances, however, when there are limited neurologic findings, as well as no structural abnormalities on brain or spine magnetic resonance imaging studies to explain the imbalance or gait difficulty. In this article, selected disorders that may be overlooked in the neurologic examination and imaging studies are reviewed. Possible causes of imbalance include occult drug-induced ataxia, autoimmune ataxia, ataxia associated with tremor, bilateral vestibular hypofunction, and spastic or dystonic gait disorders with normal imaging
Dynamical mechanism of atrial fibrillation: a topological approach
While spiral wave breakup has been implicated in the emergence of atrial
fibrillation, its role in maintaining this complex type of cardiac arrhythmia
is less clear. We used the Karma model of cardiac excitation to investigate the
dynamical mechanisms that sustain atrial fibrillation once it has been
established. The results of our numerical study show that spatiotemporally
chaotic dynamics in this regime can be described as a dynamical equilibrium
between topologically distinct types of transitions that increase or decrease
the number of wavelets, in general agreement with the multiple wavelets
hypothesis. Surprisingly, we found that the process of continuous excitation
waves breaking up into discontinuous pieces plays no role whatsoever in
maintaining spatiotemporal complexity. Instead this complexity is maintained as
a dynamical balance between wave coalescence -- a unique, previously
unidentified, topological process that increases the number of wavelets -- and
wave collapse -- a different topological process that decreases their number.Comment: 15 pages, 14 figure
Development of a Closed-Loop Strap Down Attitude System for an Ultrahigh Altitude Flight Experiment
A low-cost attitude system has been developed for an ultrahigh altitude flight experiment. The experiment uses a remotely piloted sailplane, with the wings modified for flight at altitudes greater than 100,000 ft. Mission requirements deem it necessary to measure the aircraft pitch and bank angles with accuracy better than 1.0 deg and heading with accuracy better than 5.0 deg. Vehicle cost restrictions and gross weight limits make installing a commercial inertial navigation system unfeasible. Instead, a low-cost attitude system was developed using strap down components. Monte Carlo analyses verified that two vector measurements, magnetic field and velocity, are required to completely stabilize the error equations. In the estimating algorithm, body-axis observations of the airspeed vector and the magnetic field are compared against the inertial velocity vector and a magnetic-field reference model. Residuals are fed back to stabilize integration of rate gyros. The effectiveness of the estimating algorithm was demonstrated using data from the NASA Dryden Flight Research Center Systems Research Aircraft (SRA) flight tests. The algorithm was applied with good results to a maximum 10' pitch and bank angles. Effects of wind shears were evaluated and, for most cases, can be safely ignored
The Antiferromagnetic Band Structure of La2CuO4 Revisited
Using the Becke-3-LYP functional, we have performed band structure
calculations on the high temperature superconductor parent compound, La2CuO4.
Under the restricted spin formalism (rho(alpha) equal to rho(beta)), the
R-B3LYP band structure agrees well with the standard LDA band structure. It is
metallic with a single Cu x2-y2/O p(sigma) band crossing the Fermi level. Under
the unrestricted spin formalism (rho(alpha) not equal to rho(beta)), the UB3LYP
band structure has a spin polarized antiferromagnetic solution with a band gap
of 2.0 eV, agreeing well with experiment. This state is 1.0 eV (per formula
unit) lower than that calculated from the R-B3LYP. The apparent high energy of
the spin restricted state is attributed to an overestimate of on-site Coulomb
repulsion which is corrected in the unrestricted spin calculations. The
stabilization of the total energy with spin polarization arises primarily from
the stabilization of the x2-y2 band, such that the character of the eigenstates
at the top of the valence band in the antiferromagnetic state becomes a strong
mixture of Cu x2-y2/O p(sigma) and Cu z2/O' p(z). Since the Hohenberg-Kohn
theorem requires the spin restricted and spin unrestricted calculations give
exactly the same ground state energy and total density for the exact
functionals, this large disparity in energy reflects the inadequacy of current
functionals for describing the cuprates. This calls into question the use of
band structures based on current restricted spin density functionals (including
LDA) as a basis for single band theories of superconductivity in these
materials.Comment: 13 pages, 8 figures, to appear in Phys. Rev. B, for more information
see http://www.firstprinciples.co
T>0 properties of the infinitely repulsive Hubbard model for arbitrary number of holes
Based on representations of the symmetric group , explicit and exact
Schr\"odinger equation is derived for Hubbard model in any
dimensions with arbitrary number of holes, which clearly shows that during the
movement of holes the spin background of electrons plays an important role.
Starting from it, at T=0 we have analyzed the behaviour of the system depending
on the dimensionality and number of holes. Based on the presented formalism
thermodynamic quantities have also been expressed using a loop summation
technique in which the partition function is given in terms of characters of
. In case of the studied finite systems, the loop summation have been
taken into account exactly up to the 14-th order in reciprocal temperature and
the results were corrected in higher order based on Monte Carlo simulations.
The obtained results suggest that the presented formalism increase the
efficiency of the Monte Carlo simulations as well, because the spin part
contribution of the background is automatically taken into account by the
characters of .Comment: 26 pages, 1 embedded ps figure; Phil. Mag. B (in press
Chronicles of Oklahoma
Article chronicles the importance of the first Thlewarle Mekko Sapkv Coko (House of Prayer) for the Creek Indians in Indian Territory. The Baptist church was a place of community and worship for the tribe during a time of reconstruction
- …