139 research outputs found

    Offline Signature Verification by Combining Graph Edit Distance and Triplet Networks

    Full text link
    Biometric authentication by means of handwritten signatures is a challenging pattern recognition task, which aims to infer a writer model from only a handful of genuine signatures. In order to make it more difficult for a forger to attack the verification system, a promising strategy is to combine different writer models. In this work, we propose to complement a recent structural approach to offline signature verification based on graph edit distance with a statistical approach based on metric learning with deep neural networks. On the MCYT and GPDS benchmark datasets, we demonstrate that combining the structural and statistical models leads to significant improvements in performance, profiting from their complementary properties

    Introduction to Presentation Attack Detection in Fingerprint Biometrics

    Get PDF
    This chapter provides an introduction to Presentation Attack Detection (PAD) in fingerprint biometrics, also coined as anti-spoofing, describes early developments in this field, and briefly summarizes recent trends and open issues

    M2LADS: A System for Generating MultiModal Learning Analytics Dashboards

    Get PDF
    In this article, we present a Web-based System called M2LADS, which supports the integration and visualization of multimodal data recorded in learning sessions in a MOOC in the form of Web-based Dashboards. Based on the edBB platform, the multimodal data gathered contains biometric and behavioral signals including electroencephalogram data to measure learners' cognitive attention, heart rate for affective measures, visual attention from the video recordings. Additionally, learners' static background data and their learning performance measures are tracked using LOGCE and MOOC tracking logs respectively, and both are included in the Web-based System. M2LADS provides opportunities to capture learners' holistic experience during their interactions with the MOOC, which can in turn be used to improve their learning outcomes through feedback visualizations and interventions, as well as to enhance learning analytics models and improve the open content of the MOOC

    Online Signature Verification: Improving Performance through Pre-classification Based on Global Features

    Get PDF
    In this paper, a pre-classification stage based on global features is incorporated to an online signature verification system for the purposes of improving its performance. The pre-classifier makes use of the discriminative power of some global features to discard (by declaring them as forgeries) those signatures for which the associated global feature is far away from its respective mean. For the remaining signatures, features based on a wavelet approximation of the time functions associated with the signing process, are extracted, and a Random Forest based classification is performed. The experimental results show that the proposed pre-classification approach, when based on the apppropriate global feature, is capable of getting error rate improvements with respect to the case where no pre-classification is performed. The approach also has the advantages of simplifying and speeding up the verification process.Fil: Parodi, Marianela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; ArgentinaFil: Gómez, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentin

    Incorporating image quality in multi-algorithm fingerprint verification

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/11608288_29Proceedings of International Conference, ICB 2006, Hong Kong (China)The effect of image quality on the performance of fingerprint verification is studied. In particular, we investigate the performance of two fingerprint matchers based on minutiae and ridge information as well as their score-level combination under varying fingerprint image quality. The ridge-based system is found to be more robust to image quality degradation than the minutiae-based system. We exploit this fact by introducing an adaptive score fusion scheme based on automatic quality estimation in the spatial frequency domain. The proposed scheme leads to enhanced performance over a wide range of fingerprint image quality.This work has been supported by Spanish MCYT TIC2003-08382-C05-01 and by European Commission IST-2002-507634 Biosecure NoE projects
    corecore