98 research outputs found

    Prostate-Specific Antigen is Unlikely to Be a Suitable Biomarker of Semen Exposure From Recent Unprotected Receptive Anal Intercourse in Men Who Have Sex With Men

    Get PDF
    A biomarker of unprotected receptive anal intercourse (RAI) could improve validity of sexual behavior measurement. We quantified prostate-specific antigen (PSA) from rectal swabs from men who have sex with men (MSM). One swab was PSA-positive. Using current methods, PSA is an inadequate biomarker of recent unprotected RAI in MSM

    The Predominance of Hydrogen Evolution on Transition Metal Sulfides and Phosphides under CO<sub>2</sub> Reduction Conditions: An Experimental and Theoretical Study

    Get PDF
    A combination of experiment and theory has been used to understand the relationship between the hydrogen evolution reaction (HER) and CO<sub>2</sub> reduction (CO<sub>2</sub>R) on transition metal phosphide and transition metal sulfide catalysts. Although multifunctional active sites in these materials could potentially improve their CO<sub>2</sub>R activity relative to pure transition metal electrocatalysts, under aqueous testing conditions, these materials showed a high selectivity for the HER relative to CO<sub>2</sub>R. Computational results supported these findings, indicating that a limitation of the metal phosphide catalysts is that the HER is favored thermodynamically over CO<sub>2</sub>R. On Ni-MoS<sub>2</sub>, a limitation is the kinetic barrier for the proton–electron transfer to *CO. These theoretical and experimental results demonstrate that selective CO<sub>2</sub>R requires electrocatalysts that possess both favorable thermodynamic pathways and surmountable kinetic barriers

    The Predominance of Hydrogen Evolution on Transition Metal Sulfides and Phosphides under CO_2 Reduction Conditions: An Experimental and Theoretical Study

    Get PDF
    A combination of experiment and theory has been used to understand the relationship between the hydrogen evolution reaction (HER) and CO_2 reduction (CO_2R) on transition metal phosphide and transition metal sulfide catalysts. Although multifunctional active sites in these materials could potentially improve their CO_2R activity relative to pure transition metal electrocatalysts, under aqueous testing conditions, these materials showed a high selectivity for the HER relative to CO_2R. Computational results supported these findings, indicating that a limitation of the metal phosphide catalysts is that the HER is favored thermodynamically over CO_2R. On Ni-MoS_2, a limitation is the kinetic barrier for the proton–electron transfer to *CO. These theoretical and experimental results demonstrate that selective CO_2R requires electrocatalysts that possess both favorable thermodynamic pathways and surmountable kinetic barriers

    Subregional DXA-derived vertebral bone mineral measures are stronger predictors of failure load in specimens with lower areal bone mineral density, compared to those with higher areal bone mineral density

    Get PDF
    Measurement of areal bone mineral density (aBMD) in intravertebral subregions may increase the diagnostic sensitivity of dual-energy X-ray absorptiometry (DXA)-derived parameters for vertebral fragility. This study investigated whether DXA-derived bone parameters in vertebral subregions were better predictors of vertebral bone strength in specimens with low aBMD, compared to those with higher aBMD. Twenty-five lumbar vertebrae (15 embalmed and 10 fresh-frozen) were scanned with posteroanterior- (PA) and lateral-projection DXA, and then mechanically tested in compression to ultimate failure. Whole-vertebral aBMD and bone mineral content (BMC) were measured from the PA- and lateral-projection scans and within 6 intravertebral subregions. Multivariate regression was used to predict ultimate failure load by BMC, adjusted for vertebral size and specimen fixation status across the whole specimen set, and when subgrouped into specimens with low aBMD and high aBMD. Adjusted BMC explained a substantial proportion of variance in ultimate vertebral load, when measured over the whole vertebral area in lateral projection (adjusted R2 0.84) and across the six subregions (ROIs 2–7) (adjusted R2 range 0.58–0.78). The association between adjusted BMC, either measured subregionally or across the whole vertebral area, and vertebral failure load, was increased for the subgroup of specimens with identified ‘low aBMD’, compared to those with ‘high aBMD’, particularly in the anterior subregion where the adjusted R2 differed by 0.44. The relative contribution of BMC measured in vertebral subregions to ultimate failure load is greater among specimens with lower aBMD, compared to those with higher aBMD, particularly in the anterior subregion of the vertebral body

    Identification by PCR of Non-typhoidal Salmonella enterica Serovars Associated with Invasive Infections among Febrile Patients in Mali

    Get PDF
    The genus Salmonella has more than 2500 serological variants (serovars), such as Salmonella enterica serovar Typhi and Salmonella Paratyphi A and B, that cause, respectively, typhoid and paratyphoid fevers (enteric fevers), and a large number of non-typhoidal Salmonella (NTS) serovars that cause gastroenteritis in healthy hosts. In young infants, the elderly and immunocompromised hosts, NTS can cause severe, fatal invasive disease. Multiple studies of pediatric patients in sub-Saharan Africa have documented the important role of NTS, in particular Salmonella Typhimurium and Salmonella Enteritidis (and to a lesser degree Salmonella Dublin), as invasive bacterial pathogens. Salmonella spp. are isolated from blood and identified by standard microbiological techniques and the serovar is ascertained by agglutination with commercial antisera. PCR-based typing techniques are becoming increasingly popular in developing countries, in part because high quality typing sera are difficult to obtain and expensive and H serotyping is technically difficult. We have developed a series of polymerase chain reactions (PCRs) to identify Salmonella Typhimurium and variants, Salmonella Enteritidis and Salmonella Dublin. We successfully identified 327 Salmonella isolates using our multiplex PCR. We also designed primers to detect Salmonella Stanleyville, a serovar found in West Africa. Another PCR generally differentiated diphasic Salmonella Typhimurium and monophasic Salmonella Typhimurium variant strains from other closely related strains. The PCRs described here will enable more laboratories in developing countries to serotype NTS that have been isolated from blood

    Altered Chromosomal Positioning, Compaction, and Gene Expression with a Lamin A/C Gene Mutation

    Get PDF
    Lamins A and C, encoded by the LMNA gene, are filamentous proteins that form the core scaffold of the nuclear lamina. Dominant LMNA gene mutations cause multiple human diseases including cardiac and skeletal myopathies. The nuclear lamina is thought to regulate gene expression by its direct interaction with chromatin. LMNA gene mutations may mediate disease by disrupting normal gene expression.To investigate the hypothesis that mutant lamin A/C changes the lamina's ability to interact with chromatin, we studied gene misexpression resulting from the cardiomyopathic LMNA E161K mutation and correlated this with changes in chromosome positioning. We identified clusters of misexpressed genes and examined the nuclear positioning of two such genomic clusters, each harboring genes relevant to striated muscle disease including LMO7 and MBNL2. Both gene clusters were found to be more centrally positioned in LMNA-mutant nuclei. Additionally, these loci were less compacted. In LMNA mutant heart and fibroblasts, we found that chromosome 13 had a disproportionately high fraction of misexpressed genes. Using three-dimensional fluorescence in situ hybridization we found that the entire territory of chromosome 13 was displaced towards the center of the nucleus in LMNA mutant fibroblasts. Additional cardiomyopathic LMNA gene mutations were also shown to have abnormal positioning of chromosome 13, although in the opposite direction.These data support a model in which LMNA mutations perturb the intranuclear positioning and compaction of chromosomal domains and provide a mechanism by which gene expression may be altered

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Incidence of invasive salmonella disease in sub-Saharan Africa: a multicentre population-based surveillance study.

    Get PDF
    BACKGROUND: Available incidence data for invasive salmonella disease in sub-Saharan Africa are scarce. Standardised, multicountry data are required to better understand the nature and burden of disease in Africa. We aimed to measure the adjusted incidence estimates of typhoid fever and invasive non-typhoidal salmonella (iNTS) disease in sub-Saharan Africa, and the antimicrobial susceptibility profiles of the causative agents. METHODS: We established a systematic, standardised surveillance of blood culture-based febrile illness in 13 African sentinel sites with previous reports of typhoid fever: Burkina Faso (two sites), Ethiopia, Ghana, Guinea-Bissau, Kenya, Madagascar (two sites), Senegal, South Africa, Sudan, and Tanzania (two sites). We used census data and health-care records to define study catchment areas and populations. Eligible participants were either inpatients or outpatients who resided within the catchment area and presented with tympanic (≥38·0°C) or axillary temperature (≥37·5°C). Inpatients with a reported history of fever for 72 h or longer were excluded. We also implemented a health-care utilisation survey in a sample of households randomly selected from each study area to investigate health-seeking behaviour in cases of self-reported fever lasting less than 3 days. Typhoid fever and iNTS disease incidences were corrected for health-care-seeking behaviour and recruitment. FINDINGS: Between March 1, 2010, and Jan 31, 2014, 135 Salmonella enterica serotype Typhi (S Typhi) and 94 iNTS isolates were cultured from the blood of 13 431 febrile patients. Salmonella spp accounted for 33% or more of all bacterial pathogens at nine sites. The adjusted incidence rate (AIR) of S Typhi per 100 000 person-years of observation ranged from 0 (95% CI 0-0) in Sudan to 383 (274-535) at one site in Burkina Faso; the AIR of iNTS ranged from 0 in Sudan, Ethiopia, Madagascar (Isotry site), and South Africa to 237 (178-316) at the second site in Burkina Faso. The AIR of iNTS and typhoid fever in individuals younger than 15 years old was typically higher than in those aged 15 years or older. Multidrug-resistant S Typhi was isolated in Ghana, Kenya, and Tanzania (both sites combined), and multidrug-resistant iNTS was isolated in Burkina Faso (both sites combined), Ghana, Kenya, and Guinea-Bissau. INTERPRETATION: Typhoid fever and iNTS disease are major causes of invasive bacterial febrile illness in the sampled locations, most commonly affecting children in both low and high population density settings. The development of iNTS vaccines and the introduction of S Typhi conjugate vaccines should be considered for high-incidence settings, such as those identified in this study. FUNDING: Bill & Melinda Gates Foundation

    The Helicobacter pylori Genome Project : insights into H. pylori population structure from analysis of a worldwide collection of complete genomes

    Get PDF
    Helicobacter pylori, a dominant member of the gastric microbiota, shares co-evolutionary history with humans. This has led to the development of genetically distinct H. pylori subpopulations associated with the geographic origin of the host and with differential gastric disease risk. Here, we provide insights into H. pylori population structure as a part of the Helicobacter pylori Genome Project (HpGP), a multi-disciplinary initiative aimed at elucidating H. pylori pathogenesis and identifying new therapeutic targets. We collected 1011 well-characterized clinical strains from 50 countries and generated high-quality genome sequences. We analysed core genome diversity and population structure of the HpGP dataset and 255 worldwide reference genomes to outline the ancestral contribution to Eurasian, African, and American populations. We found evidence of substantial contribution of population hpNorthAsia and subpopulation hspUral in Northern European H. pylori. The genomes of H. pylori isolated from northern and southern Indigenous Americans differed in that bacteria isolated in northern Indigenous communities were more similar to North Asian H. pylori while the southern had higher relatedness to hpEastAsia. Notably, we also found a highly clonal yet geographically dispersed North American subpopulation, which is negative for the cag pathogenicity island, and present in 7% of sequenced US genomes. We expect the HpGP dataset and the corresponding strains to become a major asset for H. pylori genomics
    corecore