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Abstract 

 A combination of experiment and theory has been used to understand the relationship 

between the hydrogen evolution reaction (HER) and CO2 reduction (CO2R) on transition metal 

phosphide and transition metal sulfide catalysts. Although multifunctional active sites in these 

materials could potentially improve their CO2R activity relative to pure transition metal 

electrocatalysts, under aqueous testing conditions, these materials showed a high selectivity for 

the HER relative to CO2R. Computational results supported these findings, indicating that a 

limitation of the metal phosphide catalysts is that the HER is favored thermodynamically over 

CO2R. On Ni-MoS2, a limitation is the kinetic barrier for the proton-electron transfer to *CO. 

These theoretical and experimental results demonstrate that selective CO2R requires 

electrocatalysts that possess both favorable thermodynamic pathways and surmountable kinetic 

barriers.  

  

 

 

 

 

  



 

 

3 

Electrochemical carbon dioxide reduction (CO2R) has drawn interest for converting CO2 

into energy dense fuels such as ethanol, thereby providing an option for sustainable chemically 

based energy storage and building blocks for the chemical industry.1-6  In aqueous solutions, CO2R 

must compete with the kinetically more facile hydrogen evolution reaction (HER).  The relative 

Faradaic efficiencies for the two reactions reflect the low ratio between the concentration of 

dissolved CO2 in water and the concentration of protons and/or water that are the reactants for 

CO2R and the HER, respectively, as well as the lower kinetic barriers for the two-electron 

reduction of water to H2 relative to the multi-electron reduction of CO2 to alcohols, olefins, or 

hydrocarbons. These factors generally lead to low selectivity for CO2R. Understanding the 

competition between these reactions is critical to the development of more effective catalysts for 

CO2R. 

To facilitate large-scale adoption, CO2R catalysts need to be developed that can selectively 

synthesize high value products at low overpotentials.2-3 Polycrystalline copper electrocatalysts can 

reduce CO2 to desirable products such as ethanol but also produce at least fifteen other products.7 

Competition between CO2R and the HER further reduces the overall Faradaic efficiency toward 

any specific CO2R product.4,8 In addition to selectivity challenges, at present CO2R electrocatalysts 

require substantial overpotentials to directly reduce CO2 beyond CO or formate, leading to poor 

energy efficiency.1,4,7 On transition metal (TM) electrocatalysts, thermodynamic calculations 

suggest that the high overpotential needed to drive CO2 reduction beyond CO results in part from 

the linear scaling between the CO and CHO binding energies.9 Subsequent ab initio calculations 

of the energetics of CO reduction to CH4 show that the linear scaling between the CO binding 

energy and the transition state energy for proton-electron transfer to CO creates additional kinetic 

limitations on the activity of TM electrocatalysts for CO or CO2 reduction.10-11 These studies 
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indicate that favorable thermodynamics for the binding of reaction intermediates are necessary but 

perhaps insufficient criteria for achieving high activity and selectivity for CO2R. Thus, obtaining 

a deeper understanding of the competition between CO2R and the HER will require analyzing both 

the thermodynamics and the kinetics of reaction pathways.  

The multifunctional active sites in TM phosphides or TM sulfides could serve as possible 

motifs for circumventing the aforementioned scaling relations.9,12 In the context of hydrotreating 

reactions, the behavior of phosphide surfaces can be described by acidic functionality that is 

associated with phosphorus sites, in addition to metallic catalytic functionality associated with the 

metal sites.13 This bifunctional characteristic, along with the high degree of polarity between the 

cationic and anionic constituents, could, through secondary bonding interactions, selectively 

stabilize the H-CO transition state relative to adsorbed CO. Interaction with S or P non-metal sites 

also could produce differences in reactivity relative to TM electrocatalysts. For example, 

calculations indicate that the P atoms in MoP can stabilize adsorbate species by shifting between 

hybridization states.14 Thermodynamic calculations on TM-doped molybdenum sulfide (TM-

MoS2) materials have indicated that CO prefers to adsorb on TM sites, whereas CHO prefers to 

adsorb on the sulfur sites.15-16 Consequently, the *CO and *CHO scaling relation might be 

circumvented on these materials because the intermediates adsorb on fundamentally different 

catalytic sites. These materials could therefore potentially be more active for CO2R than TM 

catalysts, which motivates further studies using ab initio calculations to determine whether the H-

CO transition state is also stabilized in such systems. Notably, high Faradaic efficiencies have been 

reported for CO production using MoS2 and related TM dichalcogenide electrocatalysts.17-19 

However, these studies use the ionic liquid EMIMBF4 (1-ethyl-3-methylimidazolium 

tetrafluoroborate) as an additive, and ionic liquid additives can lower the overpotential needed to 
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reduce CO2 to CO.20-22 Another study on MoP nanoparticles supported on In-doped carbon showed 

high Faradic efficiencies toward formate production.23 This study used the ionic liquid BMIMPF6 

(1-butyl-3-methylimidazolium hexafluorophosphate) in a mixture of acetonitrile and water as the 

electrolyte. Deconvoluting the role of the ionic liquid additive from the intrinsic activity of the TM 

sulfide and phosphide materials requires further fundamental studies in aqueous electrolytes. 

Herein, we demonstrate the process of catalyst screening by using both experiment and 

theory to evaluate a range of TM sulfide and phosphide materials as CO2R catalysts in aqueous 

electrolyte solutions. Both thin film and nanoparticle catalyst morphologies investigated herein 

showed a high Faradaic efficiency for the HER relative to CO2R; hence these systems form a 

primary focus for the combined theoretical and experimental investigations described herein.  A 

thermodynamic analysis indicated that the TM phosphides are selective for the HER relative to 

CO2R, due to large differences in their limiting potentials (UL). While Ni-MoS2 appears to be 

promising from a thermodynamic perspective for CO2R, this sulfide does not sufficiently stabilize 

the *CO to *CHO transition state energy to allow for high CO2R activity. These results provide 

insight into the competition between the HER and CO2R on TM phosphide and TM sulfide 

surfaces and highlight the importance of understanding both thermodynamics and kinetics to 

design more active and selective catalysts for CO2R.  

Nine TM phosphide and five TM sulfide materials were tested as CO2R catalysts. The thin 

film catalysts were synthesized by deposition of a thin TM layer on a silicon substrate, followed 

by vapor-assisted conversion to the phosphide or sulfide.24-25 SnS films were produced by spin 

coating FTO (fluorine-doped Sn oxide) substrates with a solution of SnS powder in a mixture of 

ethylenediamine and 1,2-ethanedithiol.26-27 TM phosphide nanoparticles were synthesized from 

tri-n-octylphosphine (TOP) and metallic nanoparticles.28-30 Characterization of these materials can 
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be found in the Supporting Information. The CO2R activity of these electrocatalysts was evaluated 

under 1 atm of CO2 in 0.10 M potassium bicarbonate at pH 6.8.7 Current densities greater than 0.1 

mA cm-2 were investigated to understand the intrinsic catalytic activity of these materials in 

aqueous electrolytes. 

Each of the tested catalysts exhibited a high Faradaic efficiency for H2 evolution relative 

to CO2R (Figure 1). Although the intermittent release of hydrogen bubbles led to error in the 

quantification of evolved H2 and, thus, sometimes resulted in the calculation of Faradaic 

efficiencies exceeding 100 percent, this error does not affect the robustness of the conclusions 

regarding selectivity because H2 was the dominant product formed by these systems in all cases. 

Several materials produced trace amounts of methane or small quantities of CO. However, the 

Faradaic efficiency for all CO2R products was less than 3.5 percent for each tested material (Table 

1), with the HER accounting for the majority of the charge passed during the electrolysis. 

 

Figure 1. Faradaic efficiency for H2 production under CO2R conditions for representative 

transition metal phosphide and sulfide materials. Less than 3.5 percent of the current 
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density went towards CO2 reduction products on these materials.  Square symbols denote 

thin film catalysts while asterisk symbols denote nanoparticle catalysts. The color of the 

symbol corresponds to the material composition. 

Table 1. Summary of Product Distributions for All Tested Materials at a Fixed Potential  

material morphology potential  

(V vs. RHE) 

current 

density 

(mA cm-2) 

H2  

FE1 (%) 

CO  

FE1 (%) 

CH4 

FE1 (%) 

HCOO- 

FE1 (%) 

MoP Thin film -0.54 -5.1(±2.8) 110 0 0 0 

CoP Thin film -0.65 -4.0(±2.6) 103 0 0 0 

NixP Thin film -0.75 -3.6 (±2.1) 84 Trace 0 0 

MoS2 Thin film -0.69 -4.7(±1.5) 112 0 0 0 

Ni-MoSx Thin film -0.67 -3.4(±0.9) 92 0 0 0 

Co-MoSx Thin film -0.66 -4.0 (±0.2) 114 0 0 0 

Fe-MoSx Thin film -0.75 -4.9 (±0.4) 117 0 0 0 

SnS Thin film -1.00 -1.3 (±0.3) 71 3.4 0 0 

MoP Nanoparticles -0.90 -4.0 (±0.5) 76 Trace Trace Trace 

Ni2P Nanoparticles -0.70 -9.7 (±1.5) 92 0 0 0 

CoP Nanoparticles -0.69 -12.0 (±2.0) 95 0 Trace 0 

WP Nanoparticles -0.85 -6.2 (±0.8) 92 Trace Trace 0 

IrP Nanoparticles -0.90 -11.9 (±2.2) 99 0 0 0 

RhP Nanoparticles -0.90 -11.4 (±2.5) 115 0 Trace 0 

1. FE refers to Faradaic efficiency. 

While the phosphides and sulfides showed high selectivity for H2 production, these 

catalysts also exhibited a substantial increase in the overpotential needed to drive the HER under 

CO2R testing conditions relative to the overpotential measured under traditional HER conditions, 

such as H2 purged, 0.50 M H2SO4 (Figure 2).24-25 On Au (111), Pt (111), and polycrystalline Ir 

rotating disk electrodes in 0.10 M HClO4 and KClO4 electrolytes, an additional 350 to 750 mV of 

overpotential on an RHE scale was required to reach a current density of 10 mA cm-2 in a pH 7 
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electrolyte compared to a pH 1 electrolyte.31 This shift in HER activity was attributed to a 

difference in proton donating species, with hydronium acting as the proton donor in acidic pH and 

water donating protons in neutral pH.31 However, in a neutral phosphate electrolyte, CoP and FeP 

electrocatalysts needed only an additional 40 to 50 mV on an RHE scale to produce a cathodic 

current density of 10 mA cm-2, relative to the overpotentials for the HER in 0.50 M H2SO4.
29,32 

This result highlights the role of buffering species as potential proton donors, and phosphate 

species likely contribute to the HER activity in these studies.33 Under the near-neutral pH CO2R 

conditions shown in Figure 2, both bicarbonate and water could act as potential sources of protons 

for the HER.34 Much remains to be learned regarding the mechanism of proton transfer from 

buffering anions such as bicarbonate and phosphate to the catalyst surface during the HER, and it 

is noted that mass transfer could limit the activity at potentials where water cannot be reduced. 

Further CV experiments using a rotating disk electrode could help elucidate the role of the mass 

transport of buffer species on HER activity as well as simplify the comparison between the LSV 

data collected in H2SO4 and the steady state chronoamperometric measurements in KHCO3 

presented in Figure 2. Nevertheless, in addition to pH effects, additional phenomena could be 

impacting the activity of catalysts under CO2R conditions.  

Previous reports suggest that adsorbed CO can significantly affect the HER activity of 

metals, since adsorbed CO not only blocks H adsorption sites but also weakens the H binding 

energy of the surface.35-37 On metals with CO binding energies stronger than -1 eV, the equilibrium 

coverage of CO weakens the ΔG of hydrogen adsorption (ΔGH) by ~ 0.5 eV.36 Preliminary 

calculations on CoP (see Supporting Information) suggest that several of the tested materials 

should have substantial CO coverage at potentials where CO2R ought to occur. This high CO 

coverage could weaken the ΔGH and alter the HER activity on these materials.  
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To examine this possibility, we tested CoP and MoS2 thin film electrodes in an Ar, 

saturated 0.10 M KHCO3 electrolyte. Because this electrolyte is a higher pH (~9.0) than the CO2 

saturated electrolyte (~6.8), we plot the data on both an RHE (Figure 2a) and an SHE (Figure 2b)  

potential scale. Calculations (see below) suggest CO binds strongly to CoP while MoS2 binds CO 

more weakly. Thus, we would expect the effect of CO adsorption to be greater on CoP than on 

MoS2. Indeed, at potentials negative of -0.8 V vs. SHE, the HER activity of CoP appears higher in 

Ar saturated electrolyte than in CO2 saturated electrolyte. Additionally, the HER activity for CoP 

in CO2 saturated electrolyte shows a significantly different slope than in Ar saturated 0.10 M 

KHCO3. While ascribing this change in slope to specific mechanistic changes requires further 

experiment and theory, adsorbed CO has been reported to increase the Tafel slope for the HER on 

Pt catalysts.38 This effect will be investigated further in a future work. On MoS2, however, the 

HER activity is comparable between CO2 saturated KHCO3 and Ar saturated electrolyte on an 

SHE scale. These results suggest that the HER activity on strong CO binding catalysts, such as 

CoP, is being altered by adsorbed CO; this effect is not observed on weaker CO binding catalysts 

such as MoS2.While, the suppression of the HER activity under CO2R conditions is promising, the 

low selectivity towards CO2R suggests that much remains to be learned regarding the competition 

between these reactions.  
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Figure 2. Current density of CoP and MoS2 thin films under different electrochemical 

conditions. Sister samples are shown for the Ar and CO2 saturated electrolytes. Figure 2a is 

plotted on an RHE potential scale while Figure 2b is plotted on an SHE potential scale. 

Linear sweep voltammograms in H2 saturated 0.50 M H2SO4 are shown as solid lines. Steady 

state measurements in CO2 saturated 0.10 M KHCO3 are denoted as squares and with a 

dashed line to guide the eye while steady state measurements in Ar saturated 0.10 M KHCO3 

are denoted as triangles with a dotted line to guide the eye. Red lines and symbols correspond 

to measurements using CoP as an electrocatalyst while blue lines and symbols represent 

measurements using MoS2. 

To understand these experimental results, ab initio simulations were performed to gain 

insight into the selectivity of these materials towards the HER. Determination of electrochemical 

transition states requires explicit consideration of potential, ions, and solvating water molecules, 

all of which present open challenges.39-40 Consequently, we describe herein an iterative 

computational screening process, beginning with an idealized thermodynamic analysis of the CO 

to CHO and HER steps9 and subsequently pursuing computationally intensive determinations of 

the associated activation barriers for the most promising electrocatalyst candidates.  

(a) (b) 
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In previous studies on TM catalysts, thermodynamic calculations of the *CO to *CHO step 

provided a useful first description of the theoretical overpotential needed to reduce CO2 past *CO.9 

On Cu, for example, *CO and *CHO have comparable and moderate binding energies, leading to 

moderate overpotentials for CO2R to hydrocarbons and oxygenates. For TM phosphide and sulfide 

surfaces, *CO and *CHO preferentially bind to metal and phosphorus/sulfur sites, respectively. 

This behavior may in part be attributed to the bifunctional nature of these surfaces. The lone pair 

of CO acts as a Lewis base and back-bonds with metals upon adsorption.13,41 Therefore, if both 

metal and phosphorous/sulfur sites are exposed on a facet, the *CO intermediate tends to 

preferentially bind to the metal (Supporting Information).  

Figure 3a presents the bifunctional stabilization of these intermediates by plotting the 

binding energy of CHO vs. CO. This benchmark serves as a simple means to compare the behavior 

of different electrocatalysts. The *CHO intermediate is stabilized when bound to undercoordinated 

S-edge sites. On MoS2 and doped MoS2, this stabilization at edges pushes these catalysts into a 

region of thermodynamic interest, where *CO is bound moderately and comparably to *CHO. 

Unlike these sulfides, most phosphides fall near the (211) and (111) TM scaling lines. For these 

surfaces, even though *CHO preferentially binds to P-sites, the stabilization of P-*CHO relative 

to M-*CHO is marginal. Based on thermodynamic criteria alone and assuming that the activation 

energies scale with the difference between the initial and final state energies, phosphides are 

therefore unlikely to yield reduced overpotentials for CO2R.42 
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Figure 3. a. Traditional thermodynamic screening criteria for CO2R, showing the binding 

energy of CHO versus CO on surfaces at equilibrium hydrogen coverage. b. Corresponding 

theoretical UL for HER and CO2R, calculated as the free energy difference of the *CO to 

*CHO step for strong binding surfaces, and the free energy difference of the *COOH to *CO 

step for weak binding surfaces (MoP).  

One deviation from thermodynamic scaling in Figure 3a requires further discussion. The 

(001) MoP surface is P-terminated, and geometric constraints prevent any direct binding between 

adsorbates and metal sites. The P-sites interact with *CO weakly and *CHO strongly, 

differentiating between the two adsorbates and leading to the apparent deviation from the 

thermodynamic scaling line. This weakened interaction has been ascribed to shifts in hybridization 

of the P-site as well as possible lone pair repulsion of CO.14 However, CO binding is very weak 

on MoP, and hence desorption is favored relative to further reduction of *CO.  

Thermodynamic screening criteria for CO2R indicate that TM sulfides are promising 

electrocatalyst candidates, but the CO2R pathway must be compared to the competing HER. 

Hence, theoretical UL values were calculated for the HER and CO2R (Figure 3b). The UL is a 
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theoretical estimation of the minimum voltage which must be applied for a reaction step to become 

downhill in free energy and is defined as the min(-ΔG(U=0)/e) of all elementary steps along a 

reduction path.36 For TM surfaces, on which the activation and reaction energies scale, this 

measure has been a useful descriptor of activity,43-46 with trends in selectivity also shown to follow 

the difference in HER and CO2R UL.15,36 Previously, a value of |UL CO2R - UL HER| < 0.5 V was 

experimentally associated with metals for which the HER activity does not dominate relative to 

CO2R.15 For all the phosphides considered, the difference in UL is 0.6 V or greater, suggesting that 

a high selectivity for CO2R is unlikely without substantial suppression of the HER, a major 

challenge.47 This expectation is supported by the experimentally measured Faradaic efficiencies, 

which show a high selectivity for H2 production relative to CO2R. However, this limiting potential 

criterion suggests that Ni-MoS2 holds potential for high activity and selectivity for CO2R.  
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Figure 4. The charge density differences for *CO (Figure 4a),  H-CO (Figure 4b), and *CHO 

(Figure 4c) on MoS2. The blue and magenta isosurfaces correspond to charge densities of –

0.001 e Bohr–3 and 0.001 e Bohr–3, respectively. d. Potential-dependent barriers for 

CO→CHO on MoS2 and Ni-MoS2 at 0V vs RHE and pH 7, with respect to a threshold value 

of 0.75 eV. e. The barrier for CO→CHO on MoS2 and Ni-MoS2 compared to face-centered 

cubic transition metal (111) and (211) facets. 

Having passed this “first round” of thermodynamics-based screening criteria, Ni-MoS2 was 

further investigated for its corresponding electrochemical activation energies. MoS2 was also 

examined as a point of comparison.  Figure 4a-c shows the charge density isosurfaces for the 

*CO→*CHO barrier on MoS2 and illustrates the shift in charge density within the cell during the 

proton-electron transfer. The constant potential activation free energies were determined from 

these constant-charge calculations, using a charge-extrapolation scheme based on a capacitor 

model of the interface.39,48 The resulting barriers are shown as a function of potential in Figure 

4d.  

The incorporation of kinetic criteria leads to an improved estimation of the catalytic activity 

relative to that obtained by thermodynamic predictions alone. The kinetic barriers at 0 V vs. RHE 

for CO protonation at the MoS2 and Ni-MoS2 edge sites were calculated to be 1.09 eV and 1.35 

eV, respectively. As indicated in Figure 4d, a barrier of 0.75 eV, equivalent to a turnover 

frequency of one per site per second at room temperature, was defined as the threshold for facile 

kinetics. Given a transfer coefficient of 0.47 for MoS2 and 0.35 for Ni-MoS2 (See SI for 𝛽 

calculation details), overcoming the kinetic barriers to produce CO2R products becomes facile at 

potentials of -0.72 V and -1.71 V vs. RHE, respectively.  
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MoS2 was calculated to possess a surmountable kinetic barrier for CO protonation, but the 

calculated ΔGCO is weak (0.1 eV), which should limit formation of further reduced products.10 

Furthermore, the |UL CO2R - UL HER| for MoS2 lies above the 0.5 V threshold above which on 

transition metals the HER dominates over CO2R. For Ni-MoS2, the ΔGCO is calculated to be -0.20 

eV, similar to that of Cu (211); sufficiently negative free energies favor *CO coverage over 

desorption, allowing for further reduction. However, the activation barrier remains prohibitively 

high. The physical rationale behind this high barrier lies in the transition state geometry. At the 

transition and final states, the S-C distance is calculated to be 2.2 Å and 1.8 Å, respectively, which 

suggests a loosely bound transition state. Therefore, the stabilization imparted from S-sites on 

*CHO binding does not necessarily stabilize the transition state energy.  

Calculations indicate that CO rotates to expose the carbon during proton-electron transfer, 

and the activation energy would therefore decrease with weaker *CO binding (Figure 4e).10 

Neither MoS2 nor Ni-MoS2 exhibit a substantial deviation from the activation energy scaling lines 

characteristic of TM electrocatalysts, illustrating that the activation energy is determined by *CO 

binding rather than *CHO binding.  Achieving lower kinetic barriers for CO protonation will thus 

require exploration of a narrower window of CO binding energies, between Ni-MoS2 and MoS2, 

or unique sites with more rotational degrees of freedom. The calculations indicate that the 

considered TM phosphides and sulfides do not meet these criteria, in accord with the 

experimentally observed Faradaic efficiencies favoring the HER relative to CO2R. These 

observations emphasize the importance of considering activation energies in the search for new 

CO2R catalysts, and indicate that surmountable thermodynamic pathways alone, while necessary, 

are not a sufficient criterion for high activity.  
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Having explored a range of metal phosphide and sulfide catalysts, all were found to be 

more selective for the HER than for CO2R. We provide one possible explanation for this low CO2R 

selectivity using computational insights. Calculations indicate that strong binding transition metal 

phosphides, like their transition metal counterparts, show a substantially smaller UL for the HER 

than for CO2R. Microkinetic modeling of the full path should be undertaken to draw concrete 

conclusions about whether this phenomenological criterion holds for transition metal phosphides 

and sulfides, as well. Binding energy and UL calculations suggest that Ni-MoS2 could be a 

promising CO2R catalyst; however, the calculated kinetic barrier for the proton-electron transfer 

to *CO is too high to allow for facile kinetics. The combination of experiment and theory provides 

a more complete understanding of the competition between the HER and CO2R for these systems 

and motivates the exploration of methods to suppress the HER during CO2R.47 
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Experimental Methods 

Molybdenum sulfide and TM phosphide thin films were synthesized as described 

previously.24-25 A thin film of the TM was deposited onto a silicon substrate using electron beam 

physical vapor deposition. The metal thin films were then converted to the phosphide or sulfide 

through a vapor-assisted process in a tube furnace. Thin films of SnS were produced by spin 

coating a solution of SnS powder onto FTO.26-27 The nanoparticle catalysts were synthesized by 

heating metallic nanoparticles in a mixture of of tri-n-octyphosphine, 1-octadecene, and 

oleylamine was heated for 1 h under vacuum (Caution: All nanoparticle synthesis was performed 

in a fume hood to limit exposure to reagents such as trioctylphosphine and oleylamine, which can 

cause chemical burns).28,30,49 The materials were evaluated for CO2R activity in a flow cell that 

contained CO2-sparged 0.10 M KHCO3.
7 The experimental methodology is described in more 

detail in the Supporting Information. 

The lattice constants and optimization parameters for DFT calculations have been 

described previously,10,16,50 with further calculation details provided in the Supporting 

Information. A Bravais-Friedel-Donnay-Harker crystal morphology algorithm identified the most 

probable facets based on geometric considerations.51-52 On each of these low index surface 

terminations, free energy adsorption analysis was used to identify the most active facet, providing 

an estimate for the peak activity that may be observed experimentally. All reported free energies 

(G = E + EZPE − TS) are estimated by including zero point energies and entropy contributions 

calculated in the harmonic approximation. The free energy and electronic binding energies of 

adsorption for all intermediates are referenced to their gas phase counterparts. For example, 

∆GCO = G∗CO – (Gslab + GCO (g)).  
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Supporting Information  

Expanded details on synthesis, experimental methods, and computational methods; X-ray 

photoelectron spectroscopy of synthesized phosphides and sulfides; calculation of CO coverage 

on CoP; CO binding and charge density differences; complete product distribution for catalysts 

studied; and the tabulated values used to prepare figures.  
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