28 research outputs found
The Sixth Data Release of the Radial Velocity Experiment (R ave). II. Stellar Atmospheric Parameters, Chemical Abundances, and Distances
We present part 2 of the sixth and final Data Release (DR6) of the Radial Velocity Experiment (Rave), a magnitude-limited spectroscopic survey of Galactic stars randomly selected in Earth's southern hemisphere. The Rave medium-resolution spectra (R ∼ 7500) cover the Ca triplet region (8410-8795 Å) and span the complete time frame from the start of Rave observations on 2003 April 12 to their completion on 2013 April 4. In the second of two publications, we present the data products derived from 518,387 observations of 451,783 unique stars using a suite of advanced reduction pipelines focusing on stellar atmospheric parameters, in particular purely spectroscopically derived stellar atmospheric parameters, and the overall metallicity), enhanced stellar atmospheric parameters inferred via a Bayesian pipeline using Gaia DR2 astrometric priors, and asteroseismically calibrated stellar atmospheric parameters for giant stars based on asteroseismic observations for 699 K2 stars. In addition, we provide abundances of the elements Fe, Al, and Ni, as well as an overall [α/Fe] ratio obtained using a new pipeline based on the GAUGUIN optimization method that is able to deal with variable signal-to-noise ratios. The Rave DR6 catalogs are cross-matched with relevant astrometric and photometric catalogs, and are complemented by orbital parameters and effective temperatures based on the infrared flux method. The data can be accessed via the Rave website (http://rave-survey.org) or the Vizier database
The American Astronomical Society, find out more The Institute of Physics, find out more The Sixth Data Release of the Radial Velocity Experiment (Rave). II. Stellar Atmospheric Parameters, Chemical Abundances, and Distances
We present part 2 of the 6th and final Data Release (DR6 or FDR) of the Radial Velocity Experiment (RAVE), a magnitude-limited (9<I<12) spectroscopic survey of Galactic stars randomly selected in the southern hemisphere. The RAVE medium-resolution spectra (R~7500) cover the Ca-triplet region (8410-8795A) and span the complete time frame from the start of RAVE observations on 12 April 2003 to their completion on 4 April 2013. In the second of two publications, we present the data products derived from 518387 observations of 451783 unique stars using a suite of advanced reduction pipelines focussing on stellar atmospheric parameters, in particular purely spectroscopically derived stellar atmospheric parameters (Teff, log(g), and the overall metallicity), enhanced stellar atmospheric parameters inferred via a Bayesian pipeline using Gaia DR2 astrometric priors, and asteroseismically calibrated stellar atmospheric parameters for giant stars based on asteroseismic observations for 699 K2 stars. In addition, we provide abundances of the elements Fe, Al, and Ni, as well as an overall [alpha/Fe] ratio obtained using a new pipeline based on the GAUGUIN optimization method that is able to deal with variable signal-to-noise ratios. The RAVE DR6 catalogs are cross matched with relevant astrometric and photometric catalogs, and are complemented by orbital parameters and effective temperatures based on the infrared flux method. The data can be accessed via the RAVE Web site (http://rave-survey.org) or the Vizier database
The sixth data release of the Radial Velocity Experiment (RAVE) -- II:stellar atmospheric parameters, chemical abundances and distances
We present part 2 of the 6th and final Data Release (DR6 or FDR) of the
Radial Velocity Experiment (RAVE), a magnitude-limited (9<I<12) spectroscopic
survey of Galactic stars randomly selected in the southern hemisphere. The RAVE
medium-resolution spectra (R~7500) cover the Ca-triplet region (8410-8795A) and
span the complete time frame from the start of RAVE observations on 12 April
2003 to their completion on 4 April 2013. In the second of two publications, we
present the data products derived from 518387 observations of 451783 unique
stars using a suite of advanced reduction pipelines focussing on stellar
atmospheric parameters, in particular purely spectroscopically derived stellar
atmospheric parameters (Teff, log(g), and the overall metallicity), enhanced
stellar atmospheric parameters inferred via a Bayesian pipeline using Gaia DR2
astrometric priors, and asteroseismically calibrated stellar atmospheric
parameters for giant stars based on asteroseismic observations for 699 K2
stars. In addition, we provide abundances of the elements Fe, Al, and Ni, as
well as an overall [alpha/Fe] ratio obtained using a new pipeline based on the
GAUGUIN optimization method that is able to deal with variable signal-to-noise
ratios. The RAVE DR6 catalogs are cross matched with relevant astrometric and
photometric catalogs, and are complemented by orbital parameters and effective
temperatures based on the infrared flux method. The data can be accessed via
the RAVE Web site (http://rave-survey.org) or the Vizier database.Comment: 65 pages, 33 figures, accepted for publication to A
The Radial Velocity Experiment (RAVE): Fifth Data Release
Data Release 5 (DR5) of the Radial Velocity Experiment (RAVE) is the fifth data release from a magnitude-limited (9< I < 12) survey of stars randomly selected in the southern hemisphere. The RAVE medium-resolution spectra () covering the Ca-triplet region (8410-8795\AA) span the complete time frame from the start of RAVE observations in 2003 to their completion in 2013. Radial velocities from 520,781 spectra of 457,588 unique stars are presented, of which 255,922 stellar observations have parallaxes and proper motions from the Tycho-Gaia astrometric solution (TGAS) in Gaia DR1. For our main DR5 catalog, stellar parameters (effective temperature, surface gravity, and overall metallicity) are computed using the RAVE DR4 stellar pipeline, but calibrated using recent K2 Campaign 1 seismic gravities and Gaia benchmark stars, as well as results obtained from high-resolution studies. Also included are temperatures from the Infrared Flux Method, and we provide a catalogue of red giant stars in the dereddened color interval (0.50,0.85) for which the gravities were calibrated based only on seismology. Further data products for sub-samples of the RAVE stars include individual abundances for Mg, Al, Si, Ca, Ti, Fe, and Ni, and distances found using isochrones. Each RAVE spectrum is complemented by an error spectrum, which has been used to determine uncertainties on the parameters. The data can be accessed via the RAVE Web site or the Vizier database
The sixth data release of the Radial Velocity Experiment (RAVE). I. Survey description, spectra and radial velocities
The Radial Velocity Experiment (RAVE) is a magnitude-limited (9<I<12)
spectroscopic survey of Galactic stars randomly selected in the southern
hemisphere. The RAVE medium-resolution spectra (R~7500) cover the Ca-triplet
region (8410-8795A). The 6th and final data release (DR6 or FDR) is based on
518387 observations of 451783 unique stars. RAVE observations were taken
between 12 April 2003 and 4 April 2013. Here we present the genesis, setup and
data reduction of RAVE as well as wavelength-calibrated and flux-normalized
spectra and error spectra for all observations in RAVE DR6. Furthermore, we
present derived spectral classification and radial velocities for the RAVE
targets, complemented by cross matches with Gaia DR2 and other relevant
catalogs. A comparison between internal error estimates, variances derived from
stars with more than one observing epoch and a comparison with radial
velocities of Gaia DR2 reveals consistently that 68% of the objects have a
velocity accuracy better than 1.4 km/s, while 95% of the objects have radial
velocities better than 4.0 km/s. Stellar atmospheric parameters, abundances and
distances are presented in subsequent publication. The data can be accessed via
the RAVE Web (http://rave-survey.org) or the Vizier database.Comment: 32 pages, 11 figures, accepted for publication to A
Introduction to "Encyclopedia Joyce": on being very big
We present the first data release of the Radial Velocity Experiment (RAVE), an ambitious spectroscopic survey to measure radial velocities and stellar atmosphere parameters (temperature, metallicity, and surface gravity) of up to one million stars using the Six Degree Field multiobject spectrograph on the 1.2 m UK Schmidt Telescope of the Anglo-Australian Observatory. The RAVE program started in 2003, obtaining medium-resolution spectra (median R = 7500) in the Ca-triplet region (8410-8795 Å) for southern hemisphere stars drawn from the Tycho-2 and SuperCOSMOS catalogs, in the magnitude range 9 < I < 12. The first data release is described in this paper and contains radial velocities for 24,748 individual stars (25,274 measurements when including reobservations). Those data were obtained on 67 nights between 2003 April 11 and 2004 April 3. The total sky coverage within this data release is ∼4760 deg 2. The average signal-to-noise ratio of the observed spectra is 29.5, and 80% of the radial velocities have uncertainties better than 3.4 km s -1. Combining internal errors and zero-point errors, the mode is found to be 2 km s -1. Repeat observations are used to assess the stability of our radial velocity solution, resulting in a variance of 2.8 km s -1. We demonstrate that the radial velocities derived for the first data set do not show any systematic trend with color or signal-to-noise ratio. The RAVE radial velocities are complemented in the data release with proper motions from Starnet 2.0, Tycho-2, and SuperCOSMOS, in addition to photometric data from the major optical and infrared catalogs (Tycho-2, USNO-B, DENIS, and the Two Micron All Sky Survey). The data release can be accessed via the RAVE Web site. © 2006. The American Astronomical Society. All rights reserved