295 research outputs found

    Temporal and diffraction effects in entanglement creation in an optical cavity

    Get PDF
    A practical scheme for entanglement creation between distant atoms located inside a single-mode optical cavity is discussed. We show that the degree of entanglement and the time it takes for the entanglement to reach its optimum value is a sensitive function the initial conditions and the position of the atoms inside the cavity mode. It is found that the entangled properties of the two atoms can readily be extracted from dynamics of a simple two-level system. Effectively, we engineer two coupled qubits whose the dynamics are analogous to that of a driven single two-level system. It is found that spatial variations of the coupling constants actually help to create transient entanglement which may appear on the time scale much longer than that predicted for the case of equal coupling constants. When the atoms are initially prepared in an entangled state, they may remain entangled for all times. We also find that the entanglement exhibits an interesting phenomenon of diffraction when the the atoms are located between the nodes and antinodes of the cavity mode. The diffraction pattern of the entanglement varies with time and we explain this effect in terms of the quantum property of complementarity, which is manifested as a tradeoff between the knowledge of energy of the exchanged photon versus the evolution time of the system.Comment: Phys. Rev. A75, 042307 (2007

    Effect of retardation on the dynamics of entanglement between atoms

    Full text link
    The role of retardation in the entanglement dynamics of two distant atoms interacting with a multi-mode field of a ring cavity is discussed. The retardation is associated with a finite time required for light to travel between the atoms located at a finite distance and between the atoms and the cavity boundaries. We explore features in the concurrence indicative of retardation and show how these features evolve depending on the initial state of the system, distance between the atoms and the number of modes to which the atoms are coupled. In particular, we consider the short-time and the long time dynamics for both the multi- and sub-wavelength distances between the atoms. It is found that the retardation effects can qualitatively modify the entanglement dynamics of the atoms not only at multi- but also at sub-wavelength distances. We follow the temporal evolution of the concurrence and find that at short times of the evolution the retardation induces periodic sudden changes of entanglement. To analyze where the entanglement lies in the space spanned by the state vectors of the system, we introduce the collective Dicke states of the atomic system that explicitly account for the sudden changes as a periodic excitation of the atomic system to the maximally entangled symmetric state. At long times, the retardation gives rise to periodic beats in the concurrence that resemble the phenomenon of collapses and revivals in the Jaynes-Cummings model. In addition, we identify parameter values and initial conditions at which the atoms remain separable or are entangled without retardation during the entire evolution time, but exhibit the phenomena of sudden birth and sudden death of entanglement when the retardation is included.Comment: 16 pages, 14 figure

    Spin squeezing as a measure of entanglement in a two qubit system

    Get PDF
    We show that two definitions of spin squeezing extensively used in the literature [M. Kitagawa and M. Ueda, Phys. Rev. A {\bf 47}, 5138 (1993) and D.J. Wineland {\it et al.}, Phys. Rev. A {\bf 50}, 67 (1994)] give different predictions of entanglement in the two-atom Dicke system. We analyze differences between the definitions and show that the Kitagawa and Ueda's spin squeezing parameter is a better measure of entanglement than the commonly used spectroscopic spin squeezing parameter. We illustrate this relation by examining different examples of a driven two-atom Dicke system in which spin squeezing and entanglement arise dynamically. We give an explanation of the source of the difference in the prediction of entanglement using the negativity criterion for entanglement. For the examples discussed, we find that the Kitagawa and Ueda's spin squeezing parameter is the sufficient and necessary condition for entanglement.Comment: 5 pages, 4 figure

    Entanglement and nonlocality versus spontaneous emission in two-atom system

    Full text link
    We study evolution of entanglement of two two-level atoms in the presence of dissipation caused by spontaneous emission. We find explicit fromulas for the amount of entanglement as a function of time, in the case of destruction of the initial entanglement and possible creation of a transient entanglement between atoms. We also discuss how spontaneous emission influences nonlocality of states expressed by violation of Bell - CHSH inequality. It is shown that evolving system very quickly becomes local, even if entanglement is still present or produced.Comment: 15 pages, 7 figure

    Performing Conquest and Resistance in the Streets of Eighteenth Century PotosĂ­: Identity and Artifice in the Cityscapes of Gaspar Miguel de BerrĂ­o and Melchor PĂ©rez de HolguĂ­n

    Full text link
    This thesis examines the ways in which PotosĂ­\u27s two most influential colonial artists represented the urban dynamics of race, class and labor in their depictions of the Andean \u27City of Silver\u27 during the eighteenth century, when silver production, profits and population were dramatically declining

    Collective coherent population trapping in a thermal field

    Get PDF
    We analyzed the efficiency of coherent population trapping (CPT) in a superposition of the ground states of three-level atoms under the influence of the decoherence process induced by a broadband thermal field. We showed that in a single atom there is no perfect CPT when the atomic transitions are affected by the thermal field. The perfect CPT may occur when only one of the two atomic transitions is affected by the thermal field. In the case when both atomic transitions are affected by the thermal field, we demonstrated that regardless of the intensity of the thermal field the destructive effect on the CPT can be circumvented by the collective behavior of the atoms. An analytic expression was obtained for the populations of the upper atomic levels which can be considered as a measure of the level of thermal decoherence. The results show that the collective interaction between the atoms can significantly enhance the population trapping in that the population of the upper state decreases with increased number of atoms. The physical origin of this feature was explained by the semiclassical dressed atom model of the system. We introduced the concept of multiatom collective coherent population trapping by demonstrating the existence of collective (entangled) states whose storage capacity is larger than that of the equivalent states of independent atoms.Comment: Accepted for publication in Phys. Rev.

    Stationary two-atom entanglement induced by nonclassical two-photon correlations

    Full text link
    A system of two two-level atoms interacting with a squeezed vacuum field can exhibit stationary entanglement associated with nonclassical two-photon correlations characteristic of the squeezed vacuum field. The amount of entanglement present in the system is quantified by the well known measure of entanglement called concurrence. We find analytical formulas describing the concurrence for two identical and nonidentical atoms and show that it is possible to obtain a large degree of steady-state entanglement in the system. Necessary conditions for the entanglement are nonclassical two-photon correlations and nonzero collective decay. It is shown that nonidentical atoms are a better source of stationary entanglement than identical atoms. We discuss the optimal physical conditions for creating entanglement in the system, in particular, it is shown that there is an optimal and rather small value of the mean photon number required for creating entanglement.Comment: 17 pages, 5 figure

    Deterministic creation of stationary entangled states by dissipation

    Full text link
    We propose a practical physical system for creation of a stationary entanglement by dissipation without employing the environment engineering techniques. The system proposed is composed of two perfectly distinguishable atoms, through their significantly different transition frequencies, with only one atom addressed by an external laser field. We show that the arrangement would easily be realized in practice by trapping the atoms at the distance equal to the quarter-wavelength of a standing-wave laser field and locating one of the atoms at a node and the other at the successive antinode of the wave. The undesirable dipole-dipole interaction between the atoms, that could be large at this small distance, is adjusted to zero by a specific initial preparation of the atoms or by a specific polarization of the atomic dipole moments. Following this arrangement, we show that the dissipative relaxation can create a stationary entanglement on demand by tuning the Rabi frequency of the laser field to the difference between the atomic transition frequencies. The laser field dresses the atom and we identify that the entangled state occurs when the frequency of one of the Rabi sidebands of the driven atom tunes to frequency of the undriven atom. It is also found that this system behaves as a cascade open system where the fluorescence from the dressed atom drives the other atom with no feedback.Comment: Published versio

    Quantum interference in optical fields and atomic radiation

    Full text link
    We discuss the connection between quantum interference effects in optical beams and radiation fields emitted from atomic systems. We illustrate this connection by a study of the first- and second-order correlation functions of optical fields and atomic dipole moments. We explore the role of correlations between the emitting systems and present examples of practical methods to implement two systems with non-orthogonal dipole moments. We also derive general conditions for quantum interference in a two-atom system and for a control of spontaneous emission. The relation between population trapping and dark states is also discussed. Moreover, we present quantum dressed-atom models of cancellation of spontaneous emission, amplification on dark transitions, fluorescence quenching and coherent population trapping.Comment: To be published in Journal of Modern Optics Special Issue on Quantum Interferenc

    Response of a two-level atom to a narrow-bandwidth squeezed-vacuum excitation

    Get PDF
    Using the coupled-system approach we calculate the optical spectra of the fluorescence and transmitted fields of a two-level atom driven by a squeezed vacuum of bandwidths smaller than the natural atomic linewidth. We find that in this regime of squeezing bandwidths the spectra exhibit unique features, such as a hole burning and a three-peak structure, which do not appear for a broadband excitation. We show that the features are unique to the quantum nature of the driving squeezed vacuum field and donor appear when the atom is driven by a classically squeezed field. We find that a quantum squeezed-vacuum field produces squeezing in the emitted fluorescence field which appears only in the squeezing spectrum while there is no squeezing in the total field. We also discuss a nonresonant excitation and find that depending on the squeezing bandwidth there is a peak or a hole in the spectrum at a frequency corresponding to a three-wave-mixing process. The hole appears only for a broadband excitation and results from the strong correlations between squeezed-vacuum photons
    • …
    corecore