77 research outputs found

    A Combined Perceptual, Physico-Chemical, and Imaging Approach to ‘Odour-Distances’ Suggests a Categorizing Function of the Drosophila Antennal Lobe

    Get PDF
    How do physico-chemical stimulus features, perception, and physiology relate? Given the multi-layered and parallel architecture of brains, the question specifically is where physiological activity patterns correspond to stimulus features and/or perception. Perceived distances between six odour pairs are defined behaviourally from four independent odour recognition tasks. We find that, in register with the physico-chemical distances of these odours, perceived distances for 3-octanol and n-amylacetate are consistently smallest in all four tasks, while the other five odour pairs are about equally distinct. Optical imaging in the antennal lobe, using a calcium sensor transgenically expressed in only first-order sensory or only second-order olfactory projection neurons, reveals that 3-octanol and n-amylacetate are distinctly represented in sensory neurons, but appear merged in projection neurons. These results may suggest that within-antennal lobe processing funnels sensory signals into behaviourally meaningful categories, in register with the physico-chemical relatedness of the odours

    FTLD-TDP with motor neuron disease, visuospatial impairment and a progressive supranuclear palsy-like syndrome: broadening the clinical phenotype of TDP-43 proteinopathies. A report of three cases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Frontotemporal lobar degeneration with ubiquitin and TDP-43 positive neuronal inclusions represents a novel entity (FTLD-TDP) that may be associated with motor neuron disease (FTLD-MND); involvement of extrapyramidal and other systems has also been reported.</p> <p>Case presentation</p> <p>We present three cases with similar clinical symptoms, including Parkinsonism, supranuclear gaze palsy, visuospatial impairment and a behavioral variant of frontotemporal dementia, associated with either clinically possible or definite MND. Neuropathological examination revealed hallmarks of FTLD-TDP with major involvement of subcortical and, in particular, mesencephalic structures. These cases differed in onset and progression of clinical manifestations as well as distribution of histopathological changes in the brain and spinal cord. Two cases were sporadic, whereas the third case had a pathological variation in the progranulin gene 102 delC.</p> <p>Conclusions</p> <p>Association of a "progressive supranuclear palsy-like" syndrome with marked visuospatial impairment, motor neuron disease and early behavioral disturbances may represent a clinically distinct phenotype of FTLD-TDP. Our observations further support the concept that TDP-43 proteinopathies represent a spectrum of disorders, where preferential localization of pathogenetic inclusions and neuronal cell loss defines clinical phenotypes ranging from frontotemporal dementia with or without motor neuron disease, to corticobasal syndrome and to a progressive supranuclear palsy-like syndrome.</p

    Glucose Transporter 1 and Monocarboxylate Transporters 1, 2, and 4 Localization within the Glial Cells of Shark Blood-Brain-Barriers

    Get PDF
    Although previous studies showed that glucose is used to support the metabolic activity of the cartilaginous fish brain, the distribution and expression levels of glucose transporter (GLUT) isoforms remained undetermined. Optic/ultrastructural immunohistochemistry approaches were used to determine the expression of GLUT1 in the glial blood-brain barrier (gBBB). GLUT1 was observed solely in glial cells; it was primarily located in end-feet processes of the gBBB. Western blot analysis showed a protein with a molecular mass of 50 kDa, and partial sequencing confirmed GLUT1 identity. Similar approaches were used to demonstrate increased GLUT1 polarization to both apical and basolateral membranes in choroid plexus epithelial cells. To explore monocarboxylate transporter (MCT) involvement in shark brain metabolism, the expression of MCTs was analyzed. MCT1, 2 and 4 were expressed in endothelial cells; however, only MCT1 and MCT4 were present in glial cells. In neurons, MCT2 was localized at the cell membrane whereas MCT1 was detected within mitochondria. Previous studies demonstrated that hypoxia modified GLUT and MCT expression in mammalian brain cells, which was mediated by the transcription factor, hypoxia inducible factor-1. Similarly, we observed that hypoxia modified MCT1 cellular distribution and MCT4 expression in shark telencephalic area and brain stem, confirming the role of these transporters in hypoxia adaptation. Finally, using three-dimensional ultrastructural microscopy, the interaction between glial end-feet and leaky blood vessels of shark brain was assessed in the present study. These data suggested that the brains of shark may take up glucose from blood using a different mechanism than that used by mammalian brains, which may induce astrocyte-neuron lactate shuttling and metabolic coupling as observed in mammalian brain. Our data suggested that the structural conditions and expression patterns of GLUT1, MCT1, MCT2 and MCT4 in shark brain may establish the molecular foundation of metabolic coupling between glia and neurons

    Multiple network properties overcome random connectivity to enable stereotypic sensory responses

    Get PDF
    Connections between neuronal populations may be genetically hardwired or random. In the insect olfactory system, projection neurons of the antennal lobe connect randomly to Kenyon cells of the mushroom body. Consequently, while the odor responses of the projection neurons are stereotyped across individuals, the responses of the Kenyon cells are variable. Surprisingly, downstream of Kenyon cells, mushroom body output neurons show stereotypy in their responses. We found that the stereotypy is enabled by the convergence of inputs from many Kenyon cells onto an output neuron, and does not require learning. The stereotypy emerges in the total response of the Kenyon cell population using multiple odor-specific features of the projection neuron responses, benefits from the nonlinearity in the transfer function, depends on the convergence:randomness ratio, and is constrained by sparseness. Together, our results reveal the fundamental mechanisms and constraints with which convergence enables stereotypy in sensory responses despite random connectivity

    Towards plant-odor-related olfactory neuroethology in Drosophila

    Get PDF
    Drosophila melanogaster is today one of the three foremost models in olfactory research, paralleled only by the mouse and the nematode. In the last years, immense progress has been achieved by combining neurogenetic tools with neurophysiology, anatomy, chemistry, and behavioral assays. One of the most important tasks for a fruit fly is to find a substrate for eating and laying eggs. To perform this task the fly is dependent on olfactory cues emitted by suitable substrates as e.g. decaying fruit. In addition, in this area, considerable progress has been made during the last years, and more and more natural and behaviorally active ligands have been identified. The future challenge is to tie the progress in different fields together to give us a better understanding of how a fly really behaves. Not in a test tube, but in nature. Here, we review our present state of knowledge regarding Drosophila plant-odor-related olfactory neuroethology to provide a basis for new progress

    Gene Network Disruptions and Neurogenesis Defects in the Adult Ts1Cje Mouse Model of Down Syndrome

    Get PDF
    Background: Down syndrome (DS) individuals suffer mental retardation with further cognitive decline and early onset Alzheimer's disease. Methodology/Principal Findings: To understand how trisomy 21 causes these neurological abnormalities we investigated changes in gene expression networks combined with a systematic cell lineage analysis of adult neurogenesis using the Ts1Cje mouse model of DS. We demonstrated down regulation of a number of key genes involved in proliferation and cell cycle progression including Mcm7, Brca2, Prim1, Cenpo and Aurka in trisomic neurospheres. We found that trisomy did not affect the number of adult neural stem cells but resulted in reduced numbers of neural progenitors and neuroblasts. Analysis of differentiating adult Ts1Cje neural progenitors showed a severe reduction in numbers of neurons produced with a tendency for less elaborate neurites, whilst the numbers of astrocytes was increased. Conclusions/Significance: We have shown that trisomy affects a number of elements of adult neurogenesis likely to result in a progressive pathogenesis and consequently providing the potential for the development of therapies to slow progression of, or even ameliorate the neuronal deficits suffered by DS individuals.Chelsee A. Hewitt, King-Hwa Ling, Tobias D. Merson, Ken M. Simpson, Matthew E. Ritchie, Sarah L. King, Melanie A. Pritchard, Gordon K. Smyth, Tim Thomas, Hamish S. Scott and Anne K. Vos

    Atherosclerosis and Alzheimer - diseases with a common cause? Inflammation, oxysterols, vasculature

    Full text link
    corecore