94 research outputs found

    Platelet serotonin levels are associated with plasma soluble leptin receptor concentrations in normoglycemic women

    Get PDF
    Most peripheral serotonin (5-hydroxytryptamine (5HT)) is synthetized in the gut with platelets being its main circulating reservoir. 5HT is acting as a hormone in key organs to regulate glucose and lipid metabolism. However, the relation between platelet 5HT levels and traits related to glucose homeostasis and lipid metabolism in humans remains poorly explored. The objectives of this study were (a) to assess the association between platelet 5HT levels and plasma concentration of nonesterified fatty acids (NEFAs) and some adipokines including leptin and its soluble leptin receptor (sOb-R), (b) to assess the association between platelet 5HT levels and anthropometric traits and indexes of insulin secretion/sensitivity derived from oral glucose tolerance test (OGTT), and (c) to evaluate changes in platelet 5HT levels in response to OGTT. In a cross-sectional study, 59 normoglycemic women underwent a standard 2-hour OGTT. Plasma leptin, sOb-R, total and high molecular weight adiponectin, TNFα, and MCP1 were determined by immunoassays. Platelet 5HT levels and NEFAs were measured before and after OGTT. The free leptin index was calculated from leptin and sOb-R measurements. Insulin sensitivity indexes derived from OGTT (HOMA-S and Matsuda ISICOMP) and plasma NEFAs (Adipose-IR, Revised QUICKI) were also calculated. Our data show that among metabolic traits, platelet 5HT levels were associated with plasma sOb-R (r = 0 39, p = 0 003, corrected p = 0 018). Platelet 5HT levels were reduced in response to OGTT (779 ± 237 vs 731 ± 217 ng/109 platelets, p = 0 005). In conclusion, platelet 5HT levels are positively associated with plasma sOb-R concentrations and reduced in response to glucose intake possibly indicating a role of peripheral 5HT in leptin-mediated appetite regulation

    Autoimmunity against INS-IGF2 expressed in human pancreatic islets.

    Get PDF
    Insulin is a major autoantigen in islet autoimmunity and progression to type 1 diabetes. It has been suggested that the insulin B-chain may be critical to insulin autoimmunity in type 1 diabetes. INS-IGF2 consists of the preproinsulin signal peptide, the insulin B-chain and eight amino acids of the C-peptide in addition to 138 amino acids from the IGF2 gene. We aimed to determine 1) expression of INS-IGF2 in human pancreatic islets and 2) autoantibodies in newly diagnosed type 1 diabetes children and controls. INS-IGF2, expressed primarily in beta cells, showed higher levels of expression in islets from normal compared to donors with either type 2 diabetes (p=0.006) or high HbA1c levels (p<0.001). INS-IGF2 autoantibody levels were increased in newly diagnosed type 1 diabetes patients (n=304) compared to healthy controls (n=355; p<0.001). Displacement with cold insulin and INS-IGF2 revealed that more patients than controls had doubly reactive insulin-INS-IGF2 autoantibodies. These data suggest that INS-IGF2, which contains the preproinsulin signal peptide, the B-chain and eight amino acids of the C-peptide may be an autoantigen in type 1 diabetes. INS-IGF2 and insulin may share autoantibody binding sites, thus complicating the notion that insulin is the primary autoantigen in type 1 diabetes

    Opioid precursor protein isoform is targeted to the cell nuclei in the human brain

    Get PDF
    Background: Neuropeptide precursors are traditionally viewed as proteins giving rise to small neuropeptide molecules. Prodynorphin (PDYN) is the precursor protein to dynorphins, endogenous ligands for the kappa-opioid receptor. Alternative mRNA splicing of neuropeptide genes may regulate cell- and tissue-specific neuropeptide expression and produce novel protein isoforms. We here searched for novel PDYN mRNA and their protein product in the human brain. Methods: Novel PDYN transcripts were identified using nested PCR amplification of oligo(dT) selected full-length capped mRNA. Gene expression was analyzed by qRT-PCR, PDYN protein by western blotting and confocal imaging, dynorphin peptides by radioimmunoassay. Neuronal nuclei were isolated using fluorescence activated nuclei sorting (FANS) from postmortem human striatal tissue. lmmunofluorescence staining and con focal microscopy was performed for human caudate nucleus. Results: Two novel human PDYN mRNA splicing variants were identified. Expression of one of them was confined to the striatum where its levels constituted up to 30% of total PDYN mRNA. This transcript may be translated into ASP-PDYN protein lacking 13 N-terminal amino acids, a fragment of signal peptide (SP). Delta SP-PDYN was not processed to mature dynorphins and surprisingly, was targeted to the cell nuclei in a model cellular system. The endogenous PDYN protein was identified in the cell nuclei in human striatum by western blotting of isolated neuronal nuclei, and by confocal imaging. Conclusions and general significance: High levels of alternatively spliced Delta SP-PDYN mRNA and nuclear localization of PDYN protein suggests a nuclear function for this isoform of the opioid peptide precursor in human striatum. (C) 2016 Elsevier B.V. All rights reserved

    TCF7L2 is a master regulator of insulin production and processing

    Get PDF
    Genome-wide association studies have revealed >60 loci associated with type 2 diabetes (T2D), but the underlying causal variants and functional mechanisms remain largely elusive. Although variants in TCF7L2 confer the strongest risk of T2D among common variants by presumed effects on islet function, the molecular mechanisms are not yet well understood. Using RNA-sequencing, we have identified a TCF7L2-regulated transcriptional network responsible for its effect on insulin secretion in rodent and human pancreatic islets. ISL1 is a primary target of TCF7L2 and regulates proinsulin production and processing via MAFA, PDX1, NKX6.1, PCSK1, PCSK2 and SLC30A8, thereby providing evidence for a coordinated regulation of insulin production and processing. The risk T-allele of rs7903146 was associated with increased TCF7L2 expression, and decreased insulin content and secretion. Using gene expression profiles of 66 human pancreatic islets donors', we also show that the identified TCF7L2-ISL1 transcriptional network is regulated in a genotype-dependent manner. Taken together, these results demonstrate that not only synthesis of proinsulin is regulated by TCF7L2 but also processing and possibly clearance of proinsulin and insulin. These multiple targets in key pathways may explain why TCF7L2 has emerged as the gene showing one of the strongest associations with T2

    HTR1A a Novel Type 1 Diabetes Susceptibility Gene on Chromosome 5p13-q13

    Get PDF
    Background: We have previously performed a genome-wide linkage study in Scandinavian Type 1 diabetes (T1D) families. In the Swedish families, we detected suggestive linkage (LOD less than= 2.2) to the chromosome 5p13-q13 region. The aim of our study was to investigate the linked region in search for possible T1D susceptibility genes. Methodology/Principal Findings: Microsatellites were genotyped in the Scandinavian families to fine-map the previously linked region. Further, SNPs were genotyped in Swedish and Danish families as well as Swedish sporadic cases. In the Swedish families we detected genome-wide significant linkage to the 5-hydroxytryptamine receptor 1A (HTR1A) gene (LOD 3.98, pless than9.8x10(-6)). Markers tagging two separate genes; the ring finger protein 180 (RNF180) and HTR1A showed association to T1D in the Swedish and Danish families (pless than0.002, pless than0.001 respectively). The association was not confirmed in sporadic cases. Conditional analysis indicates that the primary association was to HTR1A. Quantitative PCR show that transcripts of both HTR1A and RNF180 are present in human islets of Langerhans. Moreover, immunohistochemical analysis confirmed the presence of the 5-HTR1A protein in isolated human islets of Langerhans as well as in sections of human pancreas. Conclusions: We have identified and confirmed the association of both HTR1A and RFN180, two genes in high linkage disequilibrium (LD) to T1D in two separate family materials. As both HTR1A and RFN180 were expressed at the mRNA level and HTR1A as protein in human islets of Langerhans, we suggest that HTR1A may affect T1D susceptibility by modulating the initial autoimmune attack or either islet regeneration, insulin release, or both

    Lipid metabolism in the pancreatic beta-cell. Implications for insulin secretion.

    No full text
    We have investigated the role of lipid metabolism with regard to beta-cell function and insulin secretion. Lipids are known to play a crucial functional role in the pancreatic beta-cell, where they are essential for adequate hormone release, but may also exert a long-term toxic effect, leading to beta-cell dysfunction. Our studies in mice, where insulin resistance and glucose intolerance was induced by high fat diet, showed that beta-cells compensate by increasing mitochondrial mass and hence shift oxidation from glucose to other fuels, such as amino acids and free fatty acids. This process is likely a means to maintain euglycemia, and if it fails diabetes will evolve. We have studied the consequences of a targeted inactivation of a key enzyme in lipolysis: hormone sensitive lipase (HSL). To this end, both a global knock out of HSL and a beta-cell specific KO of the enzyme (beta-HSL KO) were created. In theory, disruption of HSL could cause an accumulation of lipids, inducing cellular toxicity, as well as having an effect on overall energy homeostasis. Additionally, insulin secretion from beta-cells could be compromised due to abrogation of an essential lipid signal normally provided by HSL. In the global KO of HSL, we found that ablation of HSL causes insulin resistance in skeletal muscle, adipose tissue and liver; accumulation of diglyceride was observed in adipose tissue. However, lack of HSL did not have an effect on insulin secretion in the global KO mouse of HSL. This may be due to compensatory mechanisms. By contrast, in our beta-HSL KO, an ablation of the protein made a strong impact on insulin secretion both in vivo and in vitro. beta-HSL KO mice were hyperglycemic, and the first phase of insulin secretion was selectively affected. Furthermore, an increase in adipose mass in beta-HSL KO mice, accompanied by a rise in plasma leptin levels, as well as increased peripheral insulin sensitivity, indicates crosstalk between tissues involved in metabolic control. We hereby conclude that HSL is a key enzyme in overall glucose homeostasis. Its pivotal role may be attributed to the provision of lipid-derived signals essential for control of insulin release

    Lipases in the pancreatic beta-cell: implications for insulin secretion.

    No full text
    Lipids have been implicated in beta-cell stimulus-secretion coupling. In such a role, lipases in beta-cells would be required to generate lipid coupling factors. We have shown previously that glucose stimulates lipolysis in rodent islets. In addition, lipolysis and diacylglycerol lipase activity in islets are abolished by orlistat, an irreversible lipase inhibitor with a broad specificity for substrates. Moreover, orlistat dose-dependently inhibits glucose- and forskolin-stimulated insulin secretion, while leaving glucose oxidation and the rise in the ATP/ADP ratio intact. In an effort to identify beta-cell lipase(s), we found that HSL (hormone-sensitive lipase), the rate-limiting enzyme for acylglycerol hydrolysis in adipocytes, is expressed in rodent beta-cells. To resolve the role of this lipase, we have created global and beta-cell-specific knockout mice. Although our line of global HSL-knockout mice is moderately glucose-intolerant owing to reduced peripheral insulin sensitivity and exhibits normal islet metabolism and insulin secretion, other HSL-knockout lines have displayed impaired insulin secretion under certain conditions. In contrast, beta-cell-specific HSL-knockout mice, which are less prone to genetic redundancy, are hyperglycaemic, presumably caused by a perturbation of first-phase insulin secretion. Thus studies by us and others demonstrate that lipases, such as HSL, play a regulatory role in beta-cell stimulus-secretion coupling

    Amylin alters human brain pericyte viability and NG2 expression

    No full text
    Amylin, a pancreatic β-cell-derived peptide hormone, forms inclusions in brain microvessels of patients with dementia who have been diagnosed with type 2 diabetes and Alzheimer's disease. The cellular localization of these inclusions and the consequences thereof are not yet known. Using immunohistochemical staining of hippocampus and parahippocampal cortex from patients with Alzheimer's disease and non-demented controls, we show that amylin cell inclusions are found in pericytes. The number of amylin cell inclusions did not differ between patients with Alzheimer's disease and controls, but amylin-containing pericytes displayed nuclear changes associated with cell death and reduced expression of the pericyte marker neuron-glial antigen 2. The impact of amylin on pericyte viability was further demonstrated in in vitro studies, which showed that pericyte death increased in presence of fibril- and oligomer amylin. Furthermore, oligomer amylin increased caspase 3/7 activity, reduced lysate neuron-glial antigen 2 levels and impaired autophagy. Our findings contribute to increased understanding of how aggregated amylin affects brain vasculature and highlight amylin as a potential factor involved in microvascular pathology in dementia progression

    Brain alpha-amylase : a novel energy regulator important in Alzheimer disease?

    No full text
    Reduced glucose metabolism and formation of polyglucosan bodies (PGB) are, beside amyloid beta plaques and neurofibrillary tangles, well-known pathological findings associated with Alzheimer's disease (AD). Since both glucose availability and PGB are regulated by enzymatic degradation of glycogen, we hypothesize that dysfunctional glycogen degradation is a critical event in AD progression. We therefore investigated whether alpha (α)-amylase, an enzyme known to efficiently degrade polysaccharides in the gastrointestinal tract, is expressed in the hippocampal CA1/subiculum and if the expression is altered in AD patients. Using immunohistochemical staining techniques, we show the presence of the α-amylase isotypes AMY1A and AMY2A in neuronal dendritic spines, pericytes and astrocytes. Moreover, AD patients showed reduced gene expression of α-amylase, but conversely increased protein levels of α-amylase as well as increased activity of the enzyme compared with non-demented controls. Lastly, we observed increased, albeit not significant, load of periodic acid-Schiff positive PGB in the brain of AD patients, which correlated with increased α-amylase activity. These findings show that α-amylase is expressed and active in the human brain, and suggest the enzyme to be affected, alternatively play a role, in the neurodegenerative Alzheimer's disease pathology
    • …
    corecore