36 research outputs found
Gluon self-energy in a two-flavor color superconductor
The energy and momentum dependence of the gluon self-energy is investigated
in a color superconductor with two flavors of massless quarks. The presence of
a color-superconducting quark-quark condensate modifies the gluon self-energy
for energies which are of the order of the gap parameter. For gluon energies
much larger than the gap, the self-energy assumes the form given by the
standard hard-dense loop approximation. It is shown that this modification of
the gluon self-energy does not affect the magnitude of the gap to leading and
subleading order in the weak-coupling limit.Comment: 21 pages, 6 figures, RevTeX, aps and epsfig style files require
Real-time propagators at finite temperature and chemical potential
We derive a form of spectral representations for all bosonic and fermionic
propagators in the real-time formulation of field theory at finite temperature
and chemical potential. Besides being simple and symmetrical between the
bosonic and the fermionic types, these representations depend explicitly on
analytic functions only. This last property allows a simple evaluation of loop
integrals in the energy variables over propagators in this form, even in
presence of chemical potentials, which is not possible over their conventional
form
1/N_c- expansion of the quark condensate at finite temperature
Previously the quark and meson properties in a many quark system at finite
temperature have been studied within effective QCD approaches in the Hartree
approximation. In the present paper we consider the influence of the mesonic
correlations on the quark self-energy and on the quark propagator within a
systematic - expansion. Using a general separable ansatz for the
nonlocal interaction, we derive a selfconsistent equation for the
correction to the quark propagator. For a separable model with cut-off
formfactor, we obtain a decrease of the condensate of the order of 20\% at zero
temperature. A lowering the critical temperature for the onset of the chiral
restoration transition due to the inclusion of mesonic correlations is obtained
what seems to be closer to the results from lattice calculations.Comment: 19 pages, REVTeX, 5 figure
Thermodynamics of an Anyon System
We examine the thermal behavior of a relativistic anyon system, dynamically
realized by coupling a charged massive spin-1 field to a Chern-Simons gauge
field. We calculate the free energy (to the next leading order), from which all
thermodynamic quantities can be determined. As examples, the dependence of
particle density on the anyon statistics and the anyon anti-anyon interference
in the ideal gas are exhibited. We also calculate two and three-point
correlation functions, and uncover certain physical features of the system in
thermal equilibrium.Comment: 18 pages; in latex; to be published in Phys. Rev.
Self-consistent Green's function approaches
We present the fundamental techniques and working equations of many-body
Green's function theory for calculating ground state properties and the
spectral strength. Green's function methods closely relate to other polynomial
scaling approaches discussed in chapters 8 and 10. However, here we aim
directly at a global view of the many-fermion structure. We derive the working
equations for calculating many-body propagators, using both the Algebraic
Diagrammatic Construction technique and the self-consistent formalism at finite
temperature. Their implementation is discussed, as well as the inclusion of
three-nucleon interactions. The self-consistency feature is essential to
guarantee thermodynamic consistency. The pairing and neutron matter models
introduced in previous chapters are solved and compared with the other methods
in this book.Comment: 58 pages, 14 figures, Submitted to Lect. Notes Phys., "An advanced
course in computational nuclear physics: Bridging the scales from quarks to
neutron stars", M. Hjorth-Jensen, M. P. Lombardo, U. van Kolck, Editor
Hydrogeophysical imaging of deposit heterogeneity and groundwater chemistry changes during DNAPL source zone bioremediation
Robust characterization and monitoring of dense nonaqueous phase liquid (DNAPL) source zones is essential for designing effective remediation strategies, and for assessing the efficacy of treatment. In this study high-resolution cross-hole electrical resistivity tomography (ERT) was evaluated as a means of monitoring a field-scale in-situ bioremediation experiment, in which emulsified vegetable oil (EVO) electron donor was injected into a trichloroethene source zone. Baseline ERT scans delineated the geometry of the interface between the contaminated alluvial aquifer and the underlying mudstone bedrock, and also the extent of drilling-induced physical heterogeneity. Time-lapse ERT images revealed major preferential flow pathways in the source and plume zones, which were corroborated by multiple lines of evidence, including geochemical monitoring and hydraulic testing using high density multilevel sampler arrays within the geophysical imaging planes. These pathways were shown to control the spatial distribution of the injected EVO, and a bicarbonate buffer introduced into the cell for pH control. Resistivity signatures were observed within the preferential flow pathways that were consistent with elevated chloride levels, providing tentative evidence from ERT of the biodegradation of chlorinated solvents