213 research outputs found

    A mechanistic study of the formation of polymer nanoparticles by the emulsification-diffusion technique

    Get PDF
    The mechanism of formation of polymer nanoparticles prepared by the emulsification-diffusion method was evaluated under different preparation conditions and by turbidimetry measurements. Biodegradable poly (D,L-lactic acid) was used as the polymer model. The results show that each emulsion droplet will form several nanoparticles and that the interfacial phenomena during solvent diffusion determine the size properties of the resulting colloid particles. These phenomena cannot be entirely explained by the convection effects caused by interfacial turbulence. We suggest that nanoparticle formation is due to diffusion alone, and we propose a mechanism based on the "diffusion-stranding” mechanism for spontaneous emulsification. In this mechanism, the diffusion of solvent causes local supersaturation near the interface, and nanoparticles are formed, due to the phase transformation and polymer aggregation that occur in these regions. This interpretation is supported by the turbidity measurements made at different polymer concentrations and stirring rate

    Preparation of Microcrystals of Piroxicam Monohydrate by Antisolvent Precipitation via Microfabricated Metallic Membranes with Ordered Pore Arrays

    Get PDF
    Microcrystals of piroxicam (PRX) monohydrate with a narrow size distribution were prepared from acetone/PRX solutions by antisolvent crystallization via metallic membranes with ordered pore arrays. Crystallization was achieved by controlled addition of the feed solution through the membrane pores into a well-stirred antisolvent. A complete transformation of an anhydrous form I into a monohydrate form of PRX was confirmed by Raman spectroscopy and differential scanning calorimetry. The size of the crystals was 7–34 ÎŒm and was controlled by the PRX concentration in the feed solution (15–25 g LÂŻÂč), antisolvent/solvent volume ratio (5–30), and type of antisolvent (Milli-Q water or 0.1–0.5 wt % aqueous solutions of hydroxypropyl methyl cellulose (HPMC), poly(vinyl alcohol) or Pluronic P-123). The smallest crystals were obtained by injecting 25 g LÂŻÂč PRX solution through a stainless-steel membrane with a pore size of 10 ÎŒm into a 0.06 wt % HPMC solution stirred at 1500 rpm using an antisolvent/solvent ratio of 20. HPMC provided better steric stabilization of microcrystals against agglomeration than poly(vinyl alcohol) and Pluronic P-123, due to hydrogen bonding interactions with PRX and water. A continuous production of large PRX monohydrate microcrystals with a volume-weighted mean diameter above 75 ÎŒm was achieved in a continuous stirred membrane crystallizer. Rapid pouring of Milli-Q water into the feed solution resulted in a mixture of highly polydispersed prism-shaped and needle-shaped crystals

    A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome

    Get PDF
    Steroid-resistant nephrotic syndrome (SRNS) is the second most frequent cause of ESRD in the first two decades of life. Effective treatment is lacking. First insights into disease mechanisms came from identification of single-gene causes of SRNS. However, the frequency of single-gene causation and its age distribution in large cohorts are unknown. We performed exon sequencing of NPHS2 and WT1 for 1783 unrelated, international families with SRNS. We then examined all patients by microfluidic multiplex PCR and next-generation sequencing for all 27 genes known to cause SRNS if mutated. We detected a single-gene cause in 29.5% (526 of 1783) of families with SRNS that manifested before 25 years of age. The fraction of families in whom a single-gene cause was identified inversely correlated with age of onset. Within clinically relevant age groups, the fraction of families with detection of the single-gene cause was as follows: onset in the first 3 months of life (69.4%), between 4 and 12 months old (49.7%), between 1 and 6 years old (25.3%), between 7 and 12 years old (17.8%), and between 13 and 18 years old (10.8%). For PLCE1, specific mutations correlated with age of onset. Notably, 1% of individuals carried mutations in genes that function within the coenzyme Q10 biosynthesis pathway, suggesting that SRNS may be treatable in these individuals. Our study results should facilitate molecular genetic diagnostics of SRNS, etiologic classification for therapeutic studies, generation of genotype-phenotype correlations, and the identification of individuals in whom a targeted treatment for SRNS may be available

    Preparation of liposomes: A novel application of microengineered membranes–From laboratory scale to large scale

    Get PDF
    This article was accepted for publication in the journal, Colloids and Surfaces B: Biointerfaces [© Elsevier B.V.] and the definitive version is available at: http://dx.doi.org/10.1016/j.colsurfb.2013.07.066A novel ethanol injection method using microengineered nickel membrane was employed to produce POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and LipoidÂź E80 liposomes at different production scales. A stirred cell device was used to produce 73 ml of the liposomal suspension and the product volume was then increased by a factor of 8 at the same transmembrane flux (140 l m−2 h−1), volume ratio of the aqueous to organic phase (4.5) and peak shear stress on the membrane surface (2.7 Pa). Two different strategies for shear control on the membrane surface have been used in the scaled-up versions of the process: a cross flow recirculation of the aqueous phase across the membrane surface and low frequency oscillation of the membrane surface (∌40 Hz) in a direction normal to the flow of the injected organic phase. Using the same membrane with a pore size of 5 ÎŒm and pore spacing of 200 ÎŒm in all devices, the size of the POPC liposomes produced in all three membrane systems was highly consistent (80–86 nm) and the coefficient of variation ranged between 26 and 36%. The smallest and most uniform liposomal nanoparticles were produced in a novel oscillating membrane system. The mean vesicle size increased with increasing the pore size of the membrane and the injection time. An increase in the vesicle size over time was caused by deposition of newly formed phospholipid fragments onto the surface of the vesicles already formed in the suspension and this increase was most pronounced for the cross flow system, due to long recirculation time. The final vesicle size in all membrane systems was suitable for their use as drug carriers in pharmaceutical formulations

    Monitoring of post-match fatigue in professional soccer: Welcome to the real world

    Get PDF
    Participation in soccer match-play leads to acute and transient subjective, biochemical, metabolic and physical disturbances in players over subsequent hours and days. Inadequate time for rest and regeneration between matches can expose players to the risk of training and competing whilst not entirely recovered. In professional soccer, contemporary competitive schedules can require teams to compete in-excess of 60 matches over the course of the season while periods of fixture congestion occur prompting much attention from researchers and practitioners to the monitoring of fatigue and readiness to play. A comprehensive body of research has investigated post-match acute and residual fatigue responses. Yet the relevance of the research for professional soccer contexts is debatable notably in relation to the study populations and designs employed. Monitoring can indeed be invasive, expensive, time-inefficient and difficult to perform routinely and simultaneously in a large squad of regularly competing players. Uncertainty also exists regarding the meaningfulness and interpretation of changes in fatigue response values and their functional relevance, and practical applicability in the field. The real-world need and cost-benefit of monitoring must be carefully weighed up. In relation to professional soccer contexts, this opinion paper intends to: 1) debate the need for PMF monitoring, 2) critique the real-world relevance of the current research literature, 3) discuss the practical burden relating to measurement tools and protocols and the collection, interpretation and application of data in the field, and, 4) propose future research perspectives
    • 

    corecore