270 research outputs found
Experimental study of ultracold neutron production in pressurized superfluid helium
We have investigated experimentally the pressure dependence of the production
of ultracold neutrons (UCN) in superfluid helium in the range from saturated
vapor pressure to 20bar. A neutron velocity selector allowed the separation of
underlying single-phonon and multiphonon pro- cesses by varying the incident
cold neutron (CN) wavelength in the range from 3.5 to 10{\AA}. The predicted
pressure dependence of UCN production derived from inelastic neutron scattering
data was confirmed for the single-phonon excitation. For multiphonon based UCN
production we found no significant dependence on pressure whereas calculations
from inelastic neutron scattering data predict an increase of 43(6)% at 20bar
relative to saturated vapor pressure. From our data we conclude that applying
pressure to superfluid helium does not increase the overall UCN production rate
at a typical CN guide.Comment: 18 pages, 8 figures Version accepted for publication in PR
Results from the Project 8 phase-1 cyclotron radiation emission spectroscopy detector
The Project 8 collaboration seeks to measure the absolute neutrino mass scale
by means of precision spectroscopy of the beta decay of tritium. Our technique,
cyclotron radiation emission spectroscopy, measures the frequency of the
radiation emitted by electrons produced by decays in an ambient magnetic field.
Because the cyclotron frequency is inversely proportional to the electron's
Lorentz factor, this is also a measurement of the electron's energy. In order
to demonstrate the viability of this technique, we have assembled and
successfully operated a prototype system, which uses a rectangular waveguide to
collect the cyclotron radiation from internal conversion electrons emitted from
a gaseous Kr source. Here we present the main design aspects of the
first phase prototype, which was operated during parts of 2014 and 2015. We
will also discuss the procedures used to analyze these data, along with the
features which have been observed and the performance achieved to date.Comment: 3 pages; 2 figures; Proceedings of Neutrino 2016, XXVII International
Conference on Neutrino Physics and Astrophysics, 4-9 July 2016, London, U
Electron Radiated Power in Cyclotron Radiation Emission Spectroscopy Experiments
The recently developed technique of Cyclotron Radiation Emission Spectroscopy
(CRES) uses frequency information from the cyclotron motion of an electron in a
magnetic bottle to infer its kinetic energy. Here we derive the expected radio
frequency signal from an electron in a waveguide CRES apparatus from first
principles. We demonstrate that the frequency-domain signal is rich in
information about the electron's kinematic parameters, and extract a set of
measurables that in a suitably designed system are sufficient for disentangling
the electron's kinetic energy from the rest of its kinematic features. This
lays the groundwork for high-resolution energy measurements in future CRES
experiments, such as the Project 8 neutrino mass measurement.Comment: 15 pages, 10 figure
Project 8 Phase III Design Concept
We present a working concept for Phase III of the Project 8 experiment,
aiming to achieve a neutrino mass sensitivity of ( C.L.)
using a large volume of molecular tritium and a phased antenna array. The
detection system is discussed in detail.Comment: 3 pages, 3 figures, Proceedings of Neutrino 2016, XXVII International
Conference on Neutrino Physics and Astrophysics, 4-9 July 2016, London, U
Single electron detection and spectroscopy via relativistic cyclotron radiation
It has been understood since 1897 that accelerating charges must emit
electromagnetic radiation. Cyclotron radiation, the particular form of
radiation emitted by an electron orbiting in a magnetic field, was first
derived in 1904. Despite the simplicity of this concept, and the enormous
utility of electron spectroscopy in nuclear and particle physics,
single-electron cyclotron radiation has never been observed directly. Here we
demonstrate single-electron detection in a novel radiofrequency spec- trometer.
We observe the cyclotron radiation emitted by individual magnetically-trapped
electrons that are produced with mildly-relativistic energies by a gaseous
radioactive source. The relativistic shift in the cyclotron frequency permits a
precise electron energy measurement. Precise beta elec- tron spectroscopy from
gaseous radiation sources is a key technique in modern efforts to measure the
neutrino mass via the tritium decay endpoint, and this work demonstrates a
fundamentally new approach to precision beta spectroscopy for future neutrino
mass experiments.Comment: 6 pages, 3 figure
Gravitational depolarization of ultracold neutrons: comparison with data
We compare the expected effects of so-called gravitationally enhanced depolarization of ultracold neutrons to measurements carried out in a spin-precession chamber exposed to a variety of vertical magnetic-field gradients. In particular, we have investigated the dependence upon these field gradients of spin-depolarization rates and also of shifts in the measured neutron Larmor precession frequency. We find excellent qualitative agreement, with gravitationally enhanced depolarization accounting for several previously unexplained features in the data
Measurement of the permanent electric dipole moment of the neutron
We present the result of an experiment to measure the electric dipole moment EDM) of the neutron at the Paul Scherrer Institute using Ramsey's method of separated oscillating magnetic fields with ultracold neutrons (UCN). Our measurement stands in the long history of EDM experiments probing physics violating time reversal invariance. The salient features of this experiment
were the use of a Hg-199 co-magnetometer and an array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic field changes. The statistical analysis was performed on blinded datasets by two separate groups while the estimation of systematic effects profited from an
unprecedented knowledge of the magnetic field. The measured value of the neutron EDM is d_{\rm n} = (0.0\pm1.1_{\rm stat}\pm0.2_{\rmsys})\times10^{-26}e\,{\rm cm}
Testing isotropy of the universe using the Ramsey resonance technique on ultracold neutron spins
Physics at the Planck scale could be revealed by looking for tiny violations
of fundamental symmetries in low energy experiments. In 2008, a sensitive test
of the isotropy of the Universe using has been performed with stored ultracold
neutrons (UCN), this is the first clock-comparison experiment performed with
free neutrons. During several days we monitored the Larmor frequency of neutron
spins in a weak magnetic field using the Ramsey resonance technique. An
non-zero cosmic axial field, violating rotational symmetry, would induce a
daily variation of the precession frequency. Our null result constitutes one of
the most stringent tests of Lorentz invariance to date.Comment: proceedings of the PNCMI2010 conferenc
An Improved Search for the Neutron Electric Dipole Moment
A permanent electric dipole moment of fundamental spin-1/2 particles violates
both parity (P) and time re- versal (T) symmetry, and hence, also charge-parity
(CP) symmetry since there is no sign of CPT-violation. The search for a neutron
electric dipole moment (nEDM) probes CP violation within and beyond the Stan-
dard Model. The experiment, set up at the Paul Scherrer Institute (PSI), an
improved, upgraded version of the apparatus which provided the current best
experimental limit, dn < 2.9E-26 ecm (90% C.L.), by the RAL/Sussex/ILL
collaboration: Baker et al., Phys. Rev. Lett. 97, 131801 (2006). In the next
two years we aim to improve the sensitivity of the apparatus to sigma(dn) =
2.6E-27 ecm corresponding to an upper limit of dn < 5E-27 ecm (95% C.L.), in
case for a null result. In parallel the collaboration works on the design of a
new apparatus to further increase the sensitivity to sigma(dn) = 2.6E-28 ecm.Comment: APS Division for particles and fields, Conference Proceedings, Two
figure
- …
