219 research outputs found

    Precise determination of the deuteron spin structure at low to moderate Q(2) with CLAS and extraction of the neutron contribution

    Get PDF
    We present the final results for the deuteron spin structure functions obtained from the full data set collected in 2000-2001 with Jefferson Lab\u27s continuous electron beam accelerator facility (CEBAF) using the CEBAF large acceptance spectrometer (CLAS). Polarized electrons with energies of 1.6, 2.5, 4.2, and 5.8 GeV were scattered from deuteron ((ND3)-N-15) targets, dynamically polarized along the beam direction, and detected with CLAS. From the measured double-spin asymmetry, the virtual photon absorption asymmetry A(1)(d) and the polarized structure function g(1)(d) were extracted over a wide kinematic range (0.05 GeV2 \u3c Q(2) \u3c 5 GeV2 and 0.9 GeV \u3c W \u3c 3 GeV). We use an unfolding procedure and a parametrization of the corresponding proton results to extract from these data the polarized structure functions A(1)(n) and g(1)(n) of the (bound) neutron, which are so far unknown in the resonance region, W \u3c 2 GeV. We compare our final results, including several moments of the deuteron and neutron spin structure functions, with various theoretical models and expectations, as well as parametrizations of the world data. The unprecedented precision and dense kinematic coverage of these data can aid in future extractions of polarized parton distributions, tests of perturbative QCD predictions for the quark polarization at large x, a better understanding of quark-hadron duality, and more precise values for higher-twist matrix elements in the framework of the operator product expansion

    Near-threshold neutral pion electroproduction at high momentum transfers and generalized form factors

    Get PDF
    We report the measurement of near-threshold neutral pion electroproduction cross sections and the extraction of the associated structure functions on the proton in the kinematic range Q(2) from 2 to 4.5 GeV2 and W from 1.08 to 1.16 GeV. These measurements allow us to access the dominant pion-nucleon s-wave multipoles E0+ and S0+ in the near-threshold region. In the light-cone sum-rule framework (LCSR), these multipoles are related to the generalized form factors G(1)(pi 0p) (Q(2)) and G(2)(pi 0p) (Q(2)). The data are compared to these generalized form factors and the results for G(1)(pi 0p) (Q(2)) are found to be in good agreement with the LCSR predictions, but the level of agreement with G(2)(pi 0p) (Q(2)) is poor. DOI: 10.1103/PhysRevC.87.04520

    Precision measurements of g(1) of the proton and of the deuteron with 6 GeV electrons

    Get PDF
    The inclusive polarized structure functions of the proton and deuteron, g(1)(p) and g(1)(d) , were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at laboratory angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual deep inelastic region kinematics, Q(2) \u3e 1 GeV2 and the final-state invariant mass W \u3e 2 GeV, the ratio of polarized to unpolarized structure functions g(1)/F-1 is found to be nearly independent of Q(2) at fixed x. Significant resonant structure is apparent at values of W up to 2.3 GeV. In the framework of perturbative quantum chromodynamics, the high-W results can be used to better constrain the polarization of quarks and gluons in the nucleon, as well as high-twist contributions

    Determination of the Proton Spin Structure Functions for 0.05 \u3c Q\u3csup\u3e2\u3c/sup\u3e \u3c5GEV\u3csup\u3e2\u3c/sup\u3e Using CLAS

    Get PDF
    We present the results of our final analysis of the full data set of gp1 Q2, the spin structure function of the proton, collected using CLAS at Jefferson Laboratory in 2000-2001. Polarized electrons with energies of 1.6, 2.5, 4.2, and 5.7 GeV were scattered from proton targets 15NH3 dynamically polarized along the beam direction) and detected with CLAS. From the measured double spin asymmetries, we extracted virtual photon asymmetries Ap1 and Ap2 and spin structure functions g p1 and gp2 over a wide kinematic range (0.05 GeV2 \u3c Q2 \u3c 5 GeV2 and 1.08 GeV\u3c W \u3c 3 GeV) and calculated moments of gp1. We compare our final results with various theoretical models and expectations, as well as with parametrizations of the world data. Our data, with their precision and dense kinematic coverage, are able to constrain fits of polarized parton distributions, test pQCD predictions for quark polarizations at large x, offer a better understanding of quark-hadron duality, and provide more precise values of higher twist matrix elements in the framework of the operator product expansion

    Determination of the proton spin structure functions for 0.05 \u3c Q(2) \u3c 5GeV(2) using CLAS

    Get PDF
    We present the results of our final analysis of the full data set of g(1)(p) (Q(2)), the spin structure function of the proton, collected using CLAS at Jefferson Laboratory in 2000-2001. Polarized electrons with energies of 1.6, 2.5, 4.2, and 5.7 GeV were scattered from proton targets ((NH3)-N-15 dynamically polarized along the beam direction) and detected with CLAS. From the measured double spin asymmetries, we extracted virtual photon asymmetries A(1)(p) and A(2)(p) and spin structure functions g(1)(p) and g(2)(p) over a wide kinematic range (0.05 GeV2 \u3c Q(2) \u3c 5 GeV2 and 1.08 GeV\u3c W \u3c 3 GeV) and calculated moments of g(1)(p). We compare our final results with various theoretical models and expectations, as well as with parametrizations of the world data. Our data, with their precision and dense kinematic coverage, are able to constrain fits of polarized parton distributions, test pQCD predictions for quark polarizations at large x, offer a better understanding of quark-hadron duality, and provide more precise values of higher twist matrix elements in the framework of the operator product expansion

    Longitudinal Spin Transfer to Λ\Lambda and Λˉ\bar{\Lambda} Hyperons in Polarized Proton-Proton Collisions at s\sqrt{s} = 200 GeV

    Get PDF
    The longitudinal spin transfer, DLLD_{LL}, from high energy polarized protons to Λ\Lambda and Λˉ\bar{\Lambda} hyperons has been measured for the first time in proton-proton collisions at s=200GeV\sqrt{s} = 200 \mathrm{GeV} with the STAR detector at RHIC. The measurements cover pseudorapidity, η\eta, in the range η<1.2|\eta| < 1.2 and transverse momenta, pTp_\mathrm{T}, up to 4GeV/c4 \mathrm{GeV}/c. The longitudinal spin transfer is found to be DLL=0.03±0.13(stat)±0.04(syst)D_{LL}= -0.03\pm 0.13(\mathrm{stat}) \pm 0.04(\mathrm{syst}) for inclusive Λ\Lambda and DLL=0.12±0.08(stat)±0.03(syst)D_{LL} = -0.12 \pm 0.08(\mathrm{stat}) \pm 0.03(\mathrm{syst}) for inclusive Λˉ\bar{\Lambda} hyperons with =0.5 = 0.5 and =3.7GeV/c = 3.7 \mathrm{GeV}/c. The dependence on η\eta and pTp_\mathrm{T} is presented.Comment: 5 pages, 4 figure

    Measurements of Dihadron Correlations Relative to the Event Plane in Au+Au Collisions at sNN=200\sqrt{s_{NN}}=200 GeV

    Full text link
    Dihadron azimuthal correlations containing a high transverse momentum (\pt) trigger particle are sensitive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium, i.e. jet-quenching. Previous measurements revealed a strong modification to dihadron azimuthal correlations in Au+Au collisions with respect to \pp\ and \dAu\ collisions. The modification increases with the collision centrality, suggesting a path-length dependence to the jet-quenching effect. This paper reports STAR measurements of dihadron azimuthal correlations in mid-central (20-60\%) Au+Au collisions at \snn=200~GeV as a function of the trigger particle's azimuthal angle relative to the event plane, \phis=|\phit-\psiEP|. The azimuthal correlation is studied as a function of both the trigger and associated particle \pt. The subtractions of the combinatorial background and anisotropic flow, assuming Zero Yield At Minimum (\zyam), are described. The away-side correlation is strongly modified, and the modification varies with \phis, which is expected to be related to the path-length that the away-side parton traverses. The pseudo-rapidity (\deta) dependence of the near-side correlation, sensitive to long range \deta correlations (the ridge), is also investigated. The ridge and jet-like components of the near-side correlation are studied as a function of \phis. The ridge appears to drop with increasing \phis while the jet-like component remains approximately constant. ...Comment: 50 pages, 39 figures, 6 table

    Target and beam-target spin asymmetries in exclusive pi(+) and pi(-) electroproduction with 1.6-to 5.7-GeV electrons

    Get PDF
    Beam-target double-spin asymmetries and target single-spin asymmetries in exclusive pi(+) and quasiexclusive pi(-) electroproduction were obtained from scattering of 1.6- to 5.7-GeV longitudinally polarized electrons from longitudinally polarized protons (for pi(+)) and deuterons (for pi(-)) using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The kinematic range covered is 1.1 \u3c W \u3c 2.6 GeV and 0.05 \u3c Q(2) \u3c 5 GeV2, with good angular coverage in the forward hemisphere. The asymmetry results were divided into approximately 40 000 kinematic bins for pi(+) from free protons and 15 000 bins for pi(-) production from bound nucleons in the deuteron. The present results are found to be in reasonable agreement with fits to previous world data for W \u3c 1.7 GeV and Q(2) \u3c 0.5 GeV2, with discrepancies increasing at higher values of Q(2), especially for W \u3e 1.5 GeV. Very large target-spin asymmetries are observed for W \u3e 1.6 GeV. When combined with cross-section measurements, the present results can provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q(2), for resonances with masses as high as 2.3 GeV

    Beam-target helicity asymmetry for γ→n→→π−p in the N*resonance region

    Get PDF
    We report the first beam-target double-polarization asymmetries in the γ þ nðpÞ → π− þ pðpÞ reaction spanning the nucleon resonance region from invariant mass W ¼ 1500 to 2300 MeV. Circularly polarized photons and longitudinally polarized deuterons in solid hydrogen deuteride (HD) have been used with the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The exclusive final state has been extracted using three very different analyses that show excellent agreement, and these have been used to deduce the E polarization observable for an effective neutron target. These results have been incorporated into new partial wave analyses and have led to significant revisions for several γnN* resonance photocouplings
    corecore