600 research outputs found
A novel mechanism of resistance to α-difluoromethylornithine induced by cycloheximide. Growth with abnormally low levels of putrescine and spermidine
Treatment of the chemically transformed fibroblasts BP-A31 and other cell lines with low concentrations of cycloheximide (CHM) for 72 h followed by the removal of the protein synthesis inhibitor leads to the proliferation of α-difluoromethylornithine (DFMO)-resistant phenotypes. These drug-resistant cells contain almost no ornithine decarboxylase (ODC) activity and concomitantly very low levels of putrescine and spermidine. Southern blot analysis and measurements of ODC activity and intracellular polyamine levels showed that the described mechanism of inducing resistance to DFMO triggered by CHM does not involve ODC gene amplification, altered transport of the drug or reduced affinity of the enzyme for DFMO. © 1986.Fil:Medrano, E.E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Burrone, O.R. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Ferrer, M.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Algranati, I.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Multicriteria-based methodology for the design of rural electrification systems. A case study in Nigeria
Electrification with micro-grids is receiving increasing attention to electrify rural areas in developing countries. However, determining the best local supply solution is a complex problem that requires considering different generation technologies (i.e. solar PV, wind or diesel) and different system configurations (off-grid or on-grid). Most existing decision aid tools to assess this design only consider economical and technical issues in a single optimization process. However, social and environmental considerations have been proven key issues to ensure long-term sustainability of the projects. In this context, the objective of this work is to develop a multicriteria procedure to allow comparing electrification designs with on-grid or isolated micro-grids and different tech-nologies considering multiple aspects. This multicriteria procedure is integrated in a two-phased methodology to assist the design of the system to electrification promoters in a structured process. First, different electrification alternatives are generated with an open-source techno-economic optimization model; next, these alternatives are evaluated and ranked with the multicriteria procedure, which considers 12 criteria representing economic, technical, socio-institutional and environmental aspects. The whole design methodology is validated with a real case study of 26 population settlements in Plateau State, Nigeria. Experts in rural electrification within the Nigerian context have been consulted to weight the criteria and particularize their evaluation for the specific case study. Results show that solar PV technology based systems are the most suitable electrification designs for communities in Nigeria, while grid connection feasibility depends on the size of the community and the distance to the closest national grid consumption point.Peer ReviewedPostprint (author's final draft
Diversity of hydrolases from hydrothermal vent sediments of the Levante Bay, Vulcano Island (Aeolian archipelago) identified by activity-based metagenomics and biochemical characterization of new esterases and an arabinopyranosidase
A metagenomic fosmid expression library established from environmental DNA (eDNA) from the shallow hot vent sediment sample collected from the Levante Bay, Vulcano Island (Aeolian archipelago) was established in Escherichia coli. Using activity-based screening assays, we have assessed 9600 fosmid clones corresponding to approximately 350 Mbp of the cloned eDNA, for the lipases/esterases/lactamases, haloalkane and haloacid dehalogenases, and glycoside hydrolases. Thirty-four positive fosmid clones were selected from the total of 120 positive hits and sequenced to yield ca. 1360 kbp of high-quality assemblies. Fosmid inserts were attributed to the members of ten bacterial phyla, including Proteobacteria, Bacteroidetes, Acidobateria, Firmicutes, Verrucomicrobia, Chloroflexi, Spirochaetes, Thermotogae, Armatimonadetes, and Planctomycetes. Of ca. 200 proteins with high biotechnological potential identified therein, we have characterized in detail three distinct α/β-hydrolases (LIPESV12_9, LIPESV12_24, LIPESV12_26) and one new α-arabinopyranosidase (GLV12_5). All LIPESV12 enzymes revealed distinct substrate specificities tested against 43 structurally diverse esters and 4 p-nitrophenol carboxyl esters. Of 16 different glycosides tested, the GLV12_5 hydrolysed only p-nitrophenol-α-(L)-arabinopyranose with a high specific activity of about 2.7 kU/mg protein. Most of the α/β-hydrolases were thermophilic and revealed a high tolerance to, and high activities in the presence of, numerous heavy metal ions. Among them, the LIPESV12_24 was the best temperature-adapted, retaining its activity after 40 min of incubation at 90 °C. Furthermore, enzymes were active in organic solvents (e.g., >30% methanol). Both LIPESV12_24 and LIPESV12_26 had the GXSXG pentapeptides and the catalytic triads Ser-Asp-His typical to the representatives of carboxylesterases of EC 3.1.1.1
Metaproteomics and metabolomics analyses of chronically petroleum-polluted sites reveal the importance of general anaerobic processes uncoupled with degradation
Crude oil is one of the most important natural assets for humankind, yet it is a major environmental pollutant, notably in marine environments. One of the largest crude oil polluted areas in the word is the semi-enclosed Mediterranean Sea, in which the metabolic potential of indigenous microbial populations towards the large-scale chronic pollution is yet to be defined, particularly in anaerobic and micro-aerophilic sites. Here, we provide an insight into the microbial metabolism in sediments from three chronically polluted marine sites along the coastline of Italy: the Priolo oil terminal/refinery site (near Siracuse, Sicily), harbour of Messina (Sicily) and shipwreck of MT Haven (near Genoa). Using shotgun metaproteomics and community metabolomics approaches, the presence of 651 microbial proteins and 4776 metabolite mass features have been detected in these three environments, revealing a high metabolic heterogeneity between the investigated sites. The proteomes displayed the prevalence of anaerobic metabolisms that were not directly related with petroleum biodegradation, indicating that in the absence of oxygen, biodegradation is significantly suppressed. This suppression was also suggested by examining the metabolome patterns. The proteome analysis further highlighted the metabolic coupling between methylotrophs and sulphate reducers in oxygen-depleted petroleum-polluted sediments
Spatial modulation of water ordering in lecithin bilayers. Evidence for a ripple-ripple phase transition
Intense motional averaging effects on the 2H nuclear magnetic resonance (NMR) spectrum of 2H2O that occur in aqueous dispersions of dimyristoyl-sn-glycero-3-phosphocholine (Myr2-PtdCho) are explained by a spatial modulation in the orientational order of the water induced by ripplelike structures. The ratio of the amplitude to the periodic length of the ripples, A/lambda, at a molar ratio of water/Myr2-PtdCho of 9.5:1, is measured by 2H NMR and found to be consistent with x-ray measurements of this ratio in the P beta phase of dipalmitoyl-sn-glycero-3-phosphocholine (Pam2-PtdCho) bilayers. The sensitivity of 2H NMR allows us to report the presence of two distinct ripple phases mediated with a discontinuous change in the value of A/lambda. This result suggests that the two ripple structures observed for several phospholipid systems in excess water by freeze-fracture electron microscopy may be associated with two different phases instead of the same phase as previously assumed
Superficial radiotherapy as haemostatic treatment in breast cancer
Poster Session [EP-1661]
Purpose or Objective Breast cancer is a common pathology in which o = 25% in tumor size and absence of bleeding was observed. Conclusion Surface radiotherapy is a treatment modality that should be taken into account in patients with breast cancer who present bleeding as a consequence of local tumor growth, given that this is a treatment comfortable for the patient, non invasive and increases the quality of patient’s life
ULIXES, unravelling and exploiting Mediterranean Sea microbial diversity and ecology for xenobiotics' and pollutants' clean up
The civilizations in the Mediterranean Sea have deeply changed the local environment, especially with the extraction of subsurface oil and gas, their refinery and transportation. Major environmental impacts are affecting all the sides of the basin with actual and potential natural and socio-economic problems. Events like the recent BP\u2019s oil disaster in the Gulf of Mexico would have a tremendous impact on a close basin like the Mediterranean Sea. The recently EU-funded project ULIXES (http://www.ulixes.unimi.it/) aims to unravel, categorize, catalogue, exploit and manage the microbial diversity available in the Mediterranean Sea for addressing bioremediation of polluted marine sites. The rationale of the project is based on the multiple diverse environmental niches of the Mediterranean Sea and the huge range of microorganisms inhabiting therein. Microbial consortia and their ecology, their components or products are used for designing novel pollutant- and site-tailored bioremediation approaches. ULIXES exploits microbial resource mining by the isolation of novel microorganisms as well as by novel advanced \u2018meta-omics\u2019 technologies for solving pollution of three major high priority pollutant classes, petroleum hydrocarbons, chlorinated compounds and heavy metals. A network of twelve European and Southern Mediterranean partners is exploring the microbial diversity and ecology associated to a large set of polluted environmental matrices including seashore sands, lagoons, harbors and deep-sea sediments, oil tanker shipwreck sites, as well as coastal and deep sea natural sites where hydrocarbon seepages occur. The mined collections are exploited for developing novel bioremediation processes to be tested in ex situ and in situ field bioremediation trials
Association between serum soluble CD40 ligand levels and mortality in patients with severe sepsis
INTRODUCTION: CD40 Ligand (CD40L) and its soluble counterpart (sCD40L) are proteins that exhibit prothrombotic and proinflammatory properties on binding to their cell surface receptor CD40. The results of small clinical studies suggest that sCD40L levels could play a role in sepsis; however, there are no data on the association between sCD40L levels and mortality of septic patients. Thus, the aim of this study was to determine whether circulating sCD40L levels could be a marker of adverse outcome in a large cohort of patients with severe sepsis.
METHODS: This was a multicenter, observational and prospective study carried out in six Spanish intensive care units. Serum levels of sCD40L, tumour necrosis factor-alpha and interleukin-10, and plasma levels of tissue factor were measured in 186 patients with severe sepsis at the time of diagnosis. Serum sCD40L was also measured in 50 age- and sex-matched controls. Survival at 30 days was used as the endpoint.
RESULTS: Circulating sCD40L levels were significantly higher in septic patients than in controls (P = 0.01), and in non-survivors (n = 62) compared to survivors (n = 124) (P = 0.04). However, the levels of CD40L were not different regarding sepsis severity. Logistic regression analysis showed that sCD40L levels >3.5 ng/mL were associated with higher mortality at 30 days (odds ratio = 2.89; 95% confidence interval = 1.37 to 6.07; P = 0.005). The area under the curve of sCD40L levels >3.5 ng/mL as predictor of mortality at 30 days was 0.58 (95% CI = 0.51 to 0.65; P = 0.03).
CONCLUSIONS: In conclusion, circulating sCD40L levels are increased in septic patients and are independently associated with mortality in these patients; thus, its modulation could represent an attractive therapeutic target
Matrix metalloproteinase-9, -10, and tissue inhibitor of matrix metalloproteinases-1 blood levels as biomarkers of severity and mortality in sepsis
INTRODUCTION: Matrix metalloproteinases (MMPs) play a role in infectious diseases through extracellular matrix (ECM) degradation, which favors the migration of immune cells from the bloodstream to sites of inflammation. Although higher levels of MMP-9 and tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) have been found in small series of patients with sepsis, MMP-10 levels have not been studied in this setting. The objective of this study was to determine the predictive value of MMP-9, MMP-10, and TIMP-1 on clinical severity and mortality in a large series of patients with severe sepsis.
METHODS: This was a multicenter, observational, and prospective study carried out in six Spanish Intensive Care Units. We included 192 (125 surviving and 67 nonsurviving) patients with severe sepsis and 50 age- and sex-matched healthy controls in the study. Serum levels of MMP-9, MMP-10, TIMP-1, tumor necrosis factor (TNF)-alpha, and interleukin (IL)-10 were measured in patients with severe sepsis at the time of diagnosis and in healthy controls.
RESULTS: Sepsis patients had higher levels of MMP-10 and TIMP-1, higher MMP-10/TIMP-1 ratios, and lower MMP-9/TIMP-1 ratios than did healthy controls (P < 0.001). An association was found between MMP-9, MMP-10, TIMP-1, and MMP-9/TIMP-1 ratios and parameters of sepsis severity, assessed by the SOFA score, the APACHE-II score, lactic acid, platelet count, and markers of coagulopathy. Nonsurviving sepsis patients had lower levels of MMP-9 (P = 0.037), higher levels of TIMP-1 (P < 0.001), lower MMP-9/TIMP-1 ratio (P = 0.003), higher levels of IL-10 (P < 0.001), and lower TNF-alpha/IL-10 ratio than did surviving patients. An association was found between MMP-9, MMP-10, and TIMP-1 levels, and TNF-alpha and IL-10 levels. The risk of death in sepsis patients with TIMP-1 values greater than 531 ng/ml was 80% higher than that in patients with lower values (RR = 1.80; 95% CI = 1.13 to 2.87;P = 0.01; sensitivity = 0.73; specificity = 0.45).
CONCLUSIONS: The novel findings of our study on patients with severe sepsis (to our knowledge, the largest series reporting data about MMP levels in sepsis) are that reduced MMP-9/TIMP-1 ratios and increased MMP-10 levels may be of great pathophysiologic significance in terms of severity and mortality, and that TIMP-1 levels may represent a biomarker to predict the clinical outcome of patients with sepsis
- …