211 research outputs found

    Assessing the growth and climate sensitivity of secondary forests in highly deforested Amazonian landscapes

    Get PDF
    Tropical forests hold 30% of Earth’s terrestrial carbon and at least 60% of its terrestrial biodiversity, but forest loss and degradation are jeopardizing these ecosystems. Although the regrowth of secondary forests has the potential to offset some of the losses of carbon and biodiversity, it remains unclear if secondary regeneration will be affected by climate changes such as higher temperatures and more frequent extreme droughts. We used a data set of 10 repeated forest inventories spanning two decades (1999–2017) to investigate carbon and tree species recovery and how climate and landscape context influence carbon dynamics in an older secondary forest located in one of the oldest post‐Columbian agricultural frontiers in the Brazilian Amazon. Carbon accumulation averaged 1.08 Mg·ha−1·yr−1, and species richness was effectively constant over the studied period. Moreover, we provide evidence that secondary forests are vulnerable to drought stress: Carbon balance and growth rates were lower in drier periods. This contrasts with drought responses in primary forests, where changes in carbon dynamics are driven by increased stem mortality. These results highlight an important climate change–vegetation feedback, whereby the increasing dry‐season lengths being observed across parts of Amazonia may reduce the effectiveness of secondary forests in sequestering carbon and mitigating climate change. In addition, the current rate of forest regrowth in this region was low compared with previous pan‐tropical and Amazonian assessments—our secondary forests reached just 41.1% of the average carbon and 56% of the tree diversity in the nearest primary forests—suggesting that these areas are unlikely to return to their original levels on politically meaningful time scales

    The effect of nitrogen input on chemical profile and bioactive properties of green- and red-colored basil cultivars

    Get PDF
    In the present study, three red-colored (Dark Opal, Basilico Rosso, and Red Basil) and one green-colored landrace (Mitikas) of basil (Ocimum basilicum L.) were grown under four nitrogen regimes, namely Control (no fertilizer added), 200 ppm, 400 ppm, and 600 ppm of nitrogen (N). Fresh yield varied depending on N input following a quadratic function in all four genotypes, and green basil performed better compared to the red cultivars. A significant interaction of genotype-N input was recorded for most of the chemical parameters measured. Tocopherols contents of leaves were consistently higher in plants that received 200 ppm of N and lower in those receiving 600 ppm of N, especially in Dark Opal and Red Basil cultivars. Polyunsaturated fatty acids (PUFA) were the major category of fatty acids and Red Basil had the lowest ratio of omega-6/omega 3 (0.29) and thus the best fatty acid profile. Polyphenols content was the highest in Red Basil and Dark Opal (25 mg/g of extract on average) and the lowest in Mitikas and decreased with increasing N input. Similarly, antioxidant activity was the highest in Dark Opal and Red Basil fertigated with 200 ppm of N, whereas all the leaf extracts tested had good antibacterial and antifungal activity. In conclusion, basil chemical and bioactive profile was significantly influenced by both genotype and N input. Red-colored basil, although less productive, had the best chemical profile, and moderate levels of N input may provide the best compromise between yield, nutritional value, and bioactivity for the species.The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support by national funds FCT/MCTES to CIMO (UIDB/00690/2020) and national funding by FCT, P.I., through the institutional scientific employment program-contract for L. Barros, A. Fernandes, M. I. Dias, and J. Pinela. The authors are grateful to the FEDER-Interreg España-Portugal program for financial support through the project 0377_Iberphenol_6_E; and to the Ministry of Education, Science and Technological Development of Republic of Serbia (451-03-68/2020-14/200007). F. Di Gioia contribution was supported by the USDA National Institute of Food and Agriculture and Hatch Appropriations under Project no. PEN04723 and Accession no. 1020664.info:eu-repo/semantics/publishedVersio

    Effect of saline conditions on chemical profile and the bioactive properties of three red-colored basil cultivars

    Get PDF
    The present study investigated the effect of salinity (Control: 1.8 dS/m, S1: 3.0 dS/m and S2: 4.5 dS/m) on the chemical composition and bioactive properties of three basil cultivars (Red Basil, Dark Opal Red and Basilico Rosso). Crop performance was not affected by increasing salinity in DoR and BaR. Fat, ash and carbohydrates content increased by salinity in DoR, whereas energetic value was negatively affected. Free sugars (total and individual compounds) increased under saline conditions (S2) in BaR, whereas reducing trends were observed for the main organic acids and tocopherols in all the cultivars. The major fatty acids were α-linolenic, linoleic and palmitic acids with no consistent salinity effects, while the richest polyphenols were sagerinic acid and eriodictyol-O-malonylhexoside. Finally, basil extracts showed moderate antioxidant and strong antifungal activity. In conclusion, salinity showed a genotype dependent effect on the chemical profile and bioactivities of the tested cultivars.The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support by national funds FCT/MCTES to CIMO (UIDB/00690/2020) and national funding by FCT, P.I., through the institutional scientific employment program-contract for L. Barros, A. Fernandes, M.I. Dias and J. Pinela. The authors are grateful to the FEDER-Interreg España-Portugal programme for financial support through the project 0377_Iberphenol_6_E; to the Ministry of Education, Science and Technological Development of Republic of Serbia (451-03-68/2020-14/200007). F. Di Gioia contribution was supported by the USDA National Institute of Food and Agriculture and Hatch Appropriations under Project #PEN04723 and Accession #1020664.info:eu-repo/semantics/publishedVersio

    Phase diagrams of classical spin fluids: the influence of an external magnetic field on the liquid-gas transition

    Full text link
    The influence of an external magnetic field on the liquid-gas phase transition in Ising, XY, and Heisenberg spin fluid models is studied using a modified mean field theory and Gibbs ensemble Monte Carlo simulations. It is demonstrated that the theory is able to reproduce quantitatively all characteristic features of the field dependence of the critical temperature T_c(H) for all the three models. These features include a monotonic decrease of T_c with rising H in the case of the Ising fluid as well as a more complicated nonmonotonic behavior for the XY and Heisenberg models. The nonmonotonicity consists in a decrease of T_c with increasing H at weak external fields, an increase of T_c with rising H in the strong field regime, and the existence of a minimum in T_c(H) at intermediate values of H. Analytical expressions for T_c(H) in the large field limit are presented as well. The magnetic para-ferro phase transition is also considered in simulations and described within the mean field theory.Comment: 14 pages, 12 figures (to be submitted to Phys. Rev. E

    Observational Constraints on Chaplygin Quartessence: Background Results

    Full text link
    We derive the constraints set by several experiments on the quartessence Chaplygin model (QCM). In this scenario, a single fluid component drives the Universe from a nonrelativistic matter-dominated phase to an accelerated expansion phase behaving, first, like dark matter and in a more recent epoch like dark energy. We consider current data from SNIa experiments, statistics of gravitational lensing, FR IIb radio galaxies, and x-ray gas mass fraction in galaxy clusters. We investigate the constraints from this data set on flat Chaplygin quartessence cosmologies. The observables considered here are dependent essentially on the background geometry, and not on the specific form of the QCM fluctuations. We obtain the confidence region on the two parameters of the model from a combined analysis of all the above tests. We find that the best-fit occurs close to the Λ\LambdaCDM limit (α=0\alpha=0). The standard Chaplygin quartessence (α=1\alpha=1) is also allowed by the data, but only at the 2σ\sim2\sigma level.Comment: Replaced to match the published version, references update

    Comparative analysis of the secretome and interactome of Trypanosoma cruzi and Trypanosoma rangeli reveals species specific immune response modulating proteins

    Get PDF
    Chagas disease, a zoonosis caused by the flagellate protozoan Trypanosoma cruzi, is a chronic and systemic parasitic infection that affects ~5–7 million people worldwide, mainly in Latin America. Chagas disease is an emerging public health problem due to the lack of vaccines and effective treatments. According to recent studies, several T. cruzi secreted proteins interact with the human host during cell invasion. Moreover, some comparative studies with T. rangeli, which is non-pathogenic in humans, have been performed to identify proteins directly involved in the pathogenesis of the disease. In this study, we present an integrated analysis of canonical putative secreted proteins (PSPs) from both species. Additionally, we propose an interactome with human host and gene family clusters, and a phylogenetic inference of a selected protein. In total, we identified 322 exclusively PSPs in T. cruzi and 202 in T. rangeli. Among the PSPs identified in T. cruzi, we found several trans-sialidases, mucins, MASPs, proteins with phospholipase 2 domains (PLA2-like), and proteins with Hsp70 domains (Hsp70-like) which have been previously characterized and demonstrated to be related to T. cruzi virulence. PSPs found in T. rangeli were related to protozoan metabolism, specifically carboxylases and phosphatases. Furthermore, we also identified PSPs that may interact with the human immune system, including heat shock and MASP proteins, but in a lower number compared to T. cruzi. Interestingly, we describe a hypothetical hybrid interactome of PSPs which reveals that T. cruzi secreted molecules may be down-regulating IL-17 whilst T. rangeli may enhance the production of IL-15. These results will pave the way for a better understanding of the pathophysiology of Chagas disease and may ultimately lead to the identification of molecular targets, such as key PSPs, that could be used to minimize the health outcomes of Chagas disease by modulating the immune response triggered by T. cruzi infection

    Impact of a Tutored Theoretical-Practical Training to Develop Undergraduate Students’ Skills for the Detection of Caries Lesions: Study Protocol for a Multicenter Controlled Randomized Study

    Get PDF
    Background: Tutored laboratorial activities could be a manner of improving the competency development of students. However, its impact over conventional theoretical classes has not yet been tested. Additionally, different university contexts could influence this issue and should be explored. Objective: To assess the impact of a tutored theoretical-practical training for teaching undergraduate students to detect caries lesions as compared with theoretical teaching activities. The impact of these teaching/learning activities will be assessed in terms of efficacy, cost/benefit, retention of knowledge/acquired competences, and student acceptability. Methods: Sixteen centers (7 centers from Brazil and 9 centers from other countries throughout the world) are involved in the inclusion of subjects for this protocol. A randomized controlled study with parallel groups will be conducted. One group (control) will be exposed to a 60- to 90-minute conventional theoretical class and the other group (test) will be exposed to the same theoretical class and also a 90-minute laboratory class, including exercises and discussions based on the evaluation of a pool of images and extracted teeth. The mentioned outcomes will be evaluated immediately after the teaching activities and also in medium- and long-term analyses. To compare the long-term outcomes, students who enrolled in the university before the participating students will be interviewed for data collection and these data will be used as a control and compared with the trained group. This stage will be a nonrandomized phase of this study, nested in the main study. Appropriate statistical analysis will be performed according to the aims of this study. Variables related to the centers will also be analyzed and used to model adjustment as possible sources of variability among results. Results: This ongoing study is funded by a Brazilian national funding agency (CNPq- 400736/2014-4). We expect that the tutored theoretical-practical training will improve the undergraduate students’ performance in the detection of caries lesions and subsequent treatment decisions, mainly in terms of long-term retention of knowledge. Our hypothesis is that tutored theoretical-practical training is a more cost-effective option for teaching undergraduate students to detect caries lesions. Conclusions: If our hypothesis is confirmed, the use of laboratory training in conjunction with theoretical classes could be used as an educational strategy in Cariology to improve the development of undergraduate students’ skills in the detection of caries lesions and clinical decision-making

    The Genome Sequence Of Leishmania (leishmania) Amazonensis: Functional Annotation And Extended Analysis Of Gene Models

    Get PDF
    We present the sequencing and annotation of the Leishmania (Leishmania) amazonensis genome, an etiological agent of human cutaneous leishmaniasis in the Amazon region of Brazil. L. (L.) amazonensis shares features with Leishmania (L.) mexicana but also exhibits unique characteristics regarding geographical distribution and clinical manifestations of cutaneous lesions (e.g. borderline disseminated cutaneous leishmaniasis). Predicted genes were scored for orthologous gene families and conserved domains in comparison with other human pathogenic Leishmania spp. Carboxypeptidase, aminotransferase, and 3′-nucleotidase genes and ATPase, thioredoxin, and chaperone-related domains were represented more abundantly in L. (L.) amazonensis and L. (L.) mexicana species. Phylogenetic analysis revealed that these two species share groups of amastin surface proteins unique to the genus that could be related to specific features of disease outcomes and host cell interactions. Additionally, we describe a hypothetical hybrid interactome of potentially secreted L. (L.) amazonensis proteins and host proteins under the assumption that parasite factors mimic their mammalian counterparts. The model predicts an interaction between an L. (L.) amazonensis heat-shock protein and mammalian Toll-like receptor 9, which is implicated in important immune responses such as cytokine and nitric oxide production. The analysis presented here represents valuable information for future studies of leishmaniasis pathogenicity and treatment. © The Author 2013.206567581(2010) Control of the Leishmaniasis WHOTechnical Report Series, , WHO. WHO Press: GenevaLainson, R., Shaw, J.J., (1987) The leishmaniases in biology and medicine. Evolution, classification and geographical distributionBates, P.A., Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies (2007) Int. J. Parasitol., 37, pp. 1097-1106Dedet, J.P., Pratlong, F., Lanotte, G., Ravel, C., Cutaneous leishmaniasis The parasite (1999) Clin. Dermatol., 17, pp. 261-268Murray, H.W., Berman, J.D., Davies, C.R., Saravia, N.G., Advances in leishmaniasis (2005) Lancet, 366, pp. 1561-1577Camara Coelho, L.I., Paes, M., Guerra, J.A., Characterization of Leishmania spp causing cutaneous leishmaniasis in Manaus, Amazonas, Brazil (2011) Parasitol. Res., 108, pp. 671-677Silveira, F.T., Lainson, R., Corbett, C.E., Further observations on clinical, histopathological, and immunological features of borderline disseminated cutaneous leishmaniasis caused by Leishmania (Leishmania) amazonensis (2005) Mem Inst Oswaldo Cruz, 100, pp. 525-534Real, F., Mortara, R.A., The diverse and dynamic nature of Leishmania parasitophorous vacuoles studied by multidimensional imaging (2012) PLoS Negl. Trop. Dis., 6, pp. e1518Real, F., Pouchelet, M., Rabinovitch, M., Leishmania (L) amazonensis: Fusion between parasitophorous vacuoles in infected bone-marrow derived mousemacrophages (2008) Exp Parasitol., 119, pp. 15-23Alpuche-Aranda, C.M., Racoosin, E.L., Swanson, J.A., Miller, S.I., Salmonella stimulate macrophage macropinocytosis and persist within spacious phagosomes (1994) J. Exp. Med., 179, pp. 601-608Real, F., Mortara, R.A., Rabinovitch, M., Fusion between Leishmania amazonensis and Leishmania major parasitophorous vacuoles: Live imaging of coinfected macrophages (2010) PLoS Negl. Trop. Dis., 4, pp. e905Ndjamen, B., Kang, B.H., Hatsuzawa, K., Kima, P.E., Leishmania parasitophorous vacuoles interact continuously with the host cell's endoplasmic reticulumparasitophorous vacuoles are hybrid compartments (2010) Cell Microbiol., 12, pp. 1480-1494Clayton, C., Shapira, M., Post-Transcriptional regulation of gene expression in trypanosomes and leishmanias (2007) Mol. Biochem. Parasitol., 156, pp. 93-101Martinez-Calvillo, S., Yan, S., Nguyen, D., Fox, M., Stuart, K., Myler, P.J., Transcription of Leishmania major Friedlin chromosome 1 initiates in both directions within a single region (2003) Mol. Cell, 11, pp. 1291-1299Haile, S., Papadopoulou, B., Developmental regulation of gene expression in trypanosomatid parasitic protozoa (2007) Curr. Opin. Microbiol., 10, pp. 569-577Martinez-Calvillo, S., Vizuet-de-Rueda, J.C., Florencio- Martinez, L.E., Manning-Cela, R.G., Figueroa-Angulo, E.E., Gene expression in trypanosomatid parasites (2010) J. Biomed. Biotechnol., 2010, p. 525241Wincker, P., Ravel, C., Blaineau, C., The Leishmania genome comprises 36 chromosomes conserved across widely divergent human pathogenic species (1996) Nucleic Acids Res., 24, pp. 1688-1694Britto, C., Ravel, C., Bastien, P., Conserved linkage groups associated with large-scale chromosomal rearrangements between Old World and New World Leishmania genomes (1998) Gene, 222, pp. 107-117Peacock, C.S., Seeger, K., Harris, D., Comparative genomic analysis of three Leishmania species that cause diverse human disease (2007) Nat. Genet., 39, pp. 839-847Raymond, F., Boisvert, S., Roy, G., Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species (2012) Nucleic Acids Res., 40, pp. 1131-1147Rovai, L., Tripp, C., Stuart, K., Simpson, L., Recurrent polymorphisms in small chromosomes of Leishmania tarentolae after nutrient stress or subcloning (1992) Mol. Biochem. Parasitol., 50, pp. 115-125Ivens, A.C., Peacock, C.S., Worthey, E.A., The genome of the kinetoplastid parasite Leishmania major (2005) Science, 309, pp. 436-442Downing, T., Imamura, H., Decuypere, S., Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance (2011) Genome Res., 21, pp. 2143-2156Rogers, M.B., Hilley, J.D., Dickens, N.J., Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania (2011) Genome Res., 21, pp. 2129-2142Smith, D.F., Peacock, C.S., Cruz, A.K., Comparative genomics: Fromgenotype to disease phenotype in the leishmaniases (2007) Int. J. Parasitol., 37, pp. 1173-1186Lye, L.F., Owens, K., Shi, H., Retention and loss of RNA interference pathways in trypanosomatid protozoans (2010) PLoS Pathog., 6, pp. e1001161Messing, J., Crea, R., Seeburg, P.H., A system for shotgun DNA sequencing (1981) Nucleic Acids Res., 9, pp. 309-321Zerbino, D.R., Birney, E., Velvet: Algorithms for de novo short read assembly using de Bruijn graphs (2008) Genome Res., 18, pp. 821-829Quinn, N.L., Levenkova, N., Chow, W., Assessing the feasibility of GS FLX Pyrosequencing for sequencing the Atlantic salmon genome (2008) BMC Genomics, 9, p. 404Sommer, D.D., Delcher, A.L., Salzberg, S.L., Pop, M., Minimus: A fast, lightweight genome assembler BMC Bioinformatics, 8, p. 64Pop, M., Kosack, D.S., Salzberg, S.L., Hierarchical scaffolding with Bambus (2004) Genome Res., 14, pp. 149-159Slater, G.S., Birney, E., Automated generation of heuristics for biological sequence comparison (2005) BMC Bioinformatics, 6, p. 31Salzberg, S.L., Delcher, A.L., Kasif, S., White, O., Microbial gene identification using interpolated Markov models (1998) Nucleic Acids Res., 26, pp. 544-548Lomsadze, A., Ter-Hovhannisyan, V., Chernoff, Y.O., Borodovsky, M., Gene identification in novel eukaryotic genomes by self-Training algorithm (2005) Nucleic Acids Res., 33, pp. 6494-6506Haas, B.J., Salzberg, S.L., Zhu, W., Automated eukaryotic gene structure annotation using EVidence Modeler and the program to assemble spliced alignments (2008) Genome Biol., 9, pp. R7Koski, L.B., Gray, M.W., Lang, B.F., Burger, G., AutoFACT: An automatic functional annotation and classification tool (2005) BMC Bioinformatics, 6, p. 151Suzek, B.E., Huang, H., McGarvey, P., Mazumder, R., Wu, C.H., UniRef: Comprehensive and non-redundant UniProt reference clusters (2007) Bioinformatics, 23, pp. 1282-1288Marchler-Bauer, A., Bryant, S.H., CD-Search: Protein domain annotations on the fly (2004) Nucleic Acids Res., 32, pp. W327-W331Bateman, A., Birney, E., Cerruti, L., The Pfam protein families database (2002) Nucleic Acids Res., 30, pp. 276-280Kanehisa, M., Goto, S., KEGG: Kyoto encyclopedia of genes and genomes (2000) Nucleic Acids Res., 28, pp. 27-30Chen, F., Mackey, A.J., Stoeckert, C.J., Jrand Roos, D.S., OrthoMCL-DB: Querying a comprehensive multi-species collection of ortholog groups (2006) Nucleic Acids Res., 34, pp. D363-D368Chen, F., Mackey, A.J., Vermunt, J.K., Roos, D.S., Assessing performance of orthology detection strategies applied to eukaryotic genomes (2007) PLoS One, 2, pp. e383Quinlan, A.R., Hall, I.M., BEDTools: A flexible suite of utilities for comparing genomic features (2010) Bioinformatics, 26, pp. 841-842Sharp, P.M., Li, W.H., The codon adaptation index - A measure of directional synonymous codon usage bias, and its potential applications (1987) Nucleic Acids Res., 15, pp. 1281-1295Sharp, P.M., Tuohy, T.M., Mosurski, K.R., Codon usage in yeast: Cluster analysis clearly differentiates highly and lowly expressed genes (1986) Nucleic Acids Res., 14, pp. 5125-5143Comeron, J.M., Aguade, M., An evaluation of measures of synonymous codon usage bias (1998) J. Mol. Evol., 47, pp. 268-274Aslett, M., Aurrecoechea, C., Berriman, M., TriTrypDB: A functional genomic resource for the Trypanosomatidae (2010) Nucleic Acids Res., 38, pp. D457-D462Drummond, A.J., Ashton, B., Buxton, S., (2011) Geneious v5.6.3., , http://www.geneious.com/, (June 2012, date last accessed)Edgar, R.C., MUSCLE: Multiple sequence alignment with high accuracy and high throughput (2004) Nucleic Acids Res., 32, pp. 1792-1797Ronquist, F., Huelsenbeck, J.P., MrBayes 3: Bayesian phylogenetic inference under mixed models (2003) Bioinformatics, 19, pp. 1572-1574Whelan, S., Goldman, N., A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach (2001) Mol. Biol. Evol., 18, pp. 691-699Emanuelsson, O., Brunak, S., Von Heijne, G., Nielsen, H., Locating proteins in the cell using TargetP SignalP and related tools Nat. Protoc., 2, pp. 953-971Bendtsen, J.D., Jensen, L.J., Blom, N., Von Heijne, G., Brunak, S., Feature-based prediction of nonclassical and leaderless protein secretion (2004) Protein Eng Des Sel: PEDS, 17, pp. 349-356Paape, D., Barrios-Llerena, M.E., Le Bihan, T., Mackay, L., Aebischer, T., Gel free analysis of the proteome of intracellular Leishmania mexicana (2010) Mol. Biochem. Parasitol., 169, pp. 108-114Lowe, T.M., Eddy, S.R., TRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence (1997) Nucleic Acids Res., 25, pp. 955-964Castillo-Ramirez, S., Vazquez-Castellanos, J.F., Gonzalez, V., Cevallos, M.A., Horizontal gene transfer and diverse functional constrains within a common replication- partitioning system in Alphaproteobacteria: The repABC operon (2009) BMC Genomics, 10, p. 536Bastien, P., Blaineau, C., Pages, M., Leishmania: Sex, lies and karyotype (1992) Parasitol. Today, 8, pp. 174-177Mannaert, A., Downing, T., Imamura, H., Dujardin, J.C., Adaptivemechanisms in pathogens: Universal aneuploidy in Leishmania (2012) Trends Parasitol., 28, pp. 370-376Sterkers, Y., Lachaud, L., Bourgeois, N., Crobu, L., Bastien, P., Pages, M., Novel insights intogenomeplasticity in Eukaryotes: Mosaic aneuploidy in Leishmania (2012) Mol. Microbiol., 86, pp. 15-23Ning, Z., Cox, A.J., Mullikin, J.C., SSAHA: A fast search method for large DNA databases (2001) Genome Res., 11, pp. 1725-1729Gentil, L.G., Lasakosvitsch, F., Silveira, J.F., Santos, M.R., Barbieri, C.L., Analysis and chromosomal mapping of Leishmania (Leishmania) amazonensis amastigote expressed sequence tags (2007) Mem Inst Oswaldo Cruz, 102, pp. 707-711Hutson, S., Structure and function of branched chain aminotransferases (2001) Prog Nucleic Acid Res. Mol. Biol., 70, pp. 175-206Ginger, M.L., Chance, M.L., Goad, L.J., Elucidation of carbon sources used for the biosynthesis of fatty acids and sterols in the trypanosomatid Leishmania mexicana (1999) Biochem. J., 342, pp. 397-405Arruda, D.C., D'Alexandri, F.L., Katzin, A.M., Uliana, S.R., Leishmania amazonensis: Biosynthesis of polyprenols of 9 isoprene units by amastigotes Exp. Parasitol., 118, pp. 624-628Neubert, T.A., Gottlieb, M., An inducible 30- nucleotidase/nuclease from the trypanosomatid Crithidia luciliae Purification and characterization (1990) J. Biol. Chem., 265, pp. 7236-7242Paletta-Silva, R., Vieira, D.P., Vieira-Bernardo, R., Leishmania amazonensis: Characterization of an ecto-30-nucleotidase activity and its possible role in virulence (2011) Exp Parasitol., 129, pp. 277-283Holmgren, A., Lu., J., Thioredoxin and thioredoxin reductase: Current research with special reference to human disease, Biochem (2010) Biophys. Res. Commun., 396, pp. 120-124Scott, P., Sher, A., A spectrum in the susceptibility of leishmanial strains to intracellular killing by murine macrophages (1986) J. Immunol., 136, pp. 1461-1466Krauth-Siegel, R.L., Comini, M.A., Redox control in trypanosomatids, parasitic protozoa with trypanothione- based thiol metabolism (2008) Biochim Biophys. Acta, 1780, pp. 1236-1248De Souza Carmo, E.V., Katz, S., Barbieri, C.L., Neutrophils reduce the parasite burden in Leishmania (Leishmania) amazonensis-infected macrophages (2010) PLoS One, 5, pp. e13815Asato, Y., Oshiro, M., Myint, C.K., Phylogenic analysis of the genus Leishmania by cytochrome b gene sequencing (2009) Exp. Parasitol., 121, pp. 352-361Fraga, J., Montalvo, A.M., DeDoncker, S., Dujardin, J.C., Van Der Auwera, G., Phylogeny of Leishmania species based on the heat-shock protein 70 gene (2010) Infect Genet. Evol., 10, pp. 238-245Rochette, A., McNicoll, F., Girard, J., Characterization and developmental gene regulation of a large gene family encoding amastin surface proteins in Leishmania spp (2005) Mol. Biochem. Parasitol., 140, pp. 205-220Jackson, A.P., The evolution of amastin surface glycoproteins in trypanosomatid parasites (2010) Mol. Biol. Evol., 27, pp. 33-45Cruz, M.C., Souza-Melo, N., Da Silva, C.V., Trypanosomacruzi: Role of delta-Amastinonextracellular amastigote cell invasion and differentiation (2012) PLoS One, 7, pp. e51804Stober, C.B., Lange, U.G., Roberts, M.T., From genome to vaccines for leishmaniasis: Screening 100 novel vaccine candidates against murine Leishmania major infection (2006) Vaccine, 24, pp. 2602-2616Rafati, S., Hassani, N., Taslimi, Y., Movassagh, H., Rochette, A., Papadopoulou, B., Amastin peptide-binding antibodies as biomarkers of active human visceral leishmaniasis (2006) Clin. Vaccine Immunol., 13, pp. 1104-1110Salotra, P., Duncan, R.C., Singh, R., Subba Raju, B.V., Sreenivas, G., Nakhasi, H.L., Upregulation of surface proteins in Leishmania donovani isolated from patients of post kala-Azar dermal leishmaniasis (2006) Microbes Infect., 8, pp. 637-644Rochette, A., Raymond, F., Ubeda, J.M., Genome-wide gene expression profiling analysis of Leishmania major and Leishmania infantum developmental stages reveals substantial differences between the two species (2008) BMC Genomics, 9, p. 255Azizi, H., Hassani, K., Taslimi, Y., Najafabadi, H.S., Papadopoulou, B., Rafati, S., Searching for virulence factors in the non-pathogenic parasite to humans Leishmania tarentolae (2009) Parasitology, 136, pp. 723-735Naderer, T., McConville, M.J., The Leishmaniamacrophage interaction: A metabolic perspective (2008) Cell Microbiol., 10, pp. 301-308De Souza Leao, S., Lang, T., Prina, E., Hellio, R., Antoine, J.C., Intracellular Leishmania amazonensis amastigotes internalize and degrade MHC class II molecules of their host cells (1995) J. Cell Sci., 108, pp. 3219-3231Silverman, J.M., Chan, S.K., Robinson, D.P., Proteomic analysis of the secretome of Leishmania donovani (2008) Genome Biol., 9, pp. R35Mouchess, M.L., Arpaia, N., Souza, G., Transmembrane mutations in Toll-like receptor 9 bypass the requirement for ectodomain proteolysis and induce fatal inflammation (2011) Immunity, 35, pp. 721-732Tuon, F.F., Fernandes, E.R., Pagliari, C., Duarte, M.I., Amato, V.S., The expression of TLR9 in human cutaneous leishmaniasis is associated with granuloma (2010) Parasite Immunol., 32, pp. 769-772Abou Fakher, F.H., Rachinel, N., Klimczak, M., Louis, J., Doyen, N., TLR9-dependent activation of dendritic cells byDNA fromLeishmania major favors Th1 cell development and the resolution of lesions (2009) J. Immunol., 182, pp. 1386-1396Carvalho, L.P., Petritus, P.M., Trochtenberg, A.L., Lymph node hypertrophy following Leishmania major infection is dependent on TLR9 (2012) J. Immunol., 188, pp. 1394-1401Favali, C., Tavares, N., Clarencio, J., Barral, A., Barral- Netto, M., Brodskyn, C., Leishmania amazonensis infection impairs differentiation and function of human dendritic cells (2007) J. Leukoc. Biol., 82, pp. 1401-1406Lezama-Davila, C.M., Isaac-Marquez, A.P., Systemic cytokine response in humans with chiclero's ulcers (2006) Parasitol Res., 99, pp. 546-553Linares, E., Augusto, O., Barao, S.C., Giorgio, S., Leishmania amazonensis infection does not inhibit systemic nitric oxide levels elicited by lipopolysaccharide in vivo (2000) J. Parasitol., 86, pp. 78-8
    corecore