314 research outputs found

    Enzymatic Synthesis of Inulin-Containing Hydrogels

    Get PDF
    The Bacillus subtilis protease Proleather FG-F catalyzed the transesterification of inulin with vinyl acrylate (VA) in dimethylformamide (DMF). The reaction conversion for different VA concentrations was greater than 57% after 96 h at 50 °C. The degree of substitution (DS, defined as the amount of acrylate groups per 100 inulin fructofuranoside residues) with acrylate moieties can be controlled by varying the molar ratio of VA to inulin. Reasonable yields were obtained (44−51%, 2 days) using a two-step purification methodology. Inulin derivatized with VA (Inul-VA) was characterized by gel permeation chromatography, and its structure was established by 1H, 13C, and 1H−1H correlation spectroscopy and 1H−13C heteronuclear multiple quantum coherence NMR. The main positional isomer was at the 6 position of the fructofuranoside residue and two other minor isomers were observed at the 3 and 4 positions. Thus, the enzymatic reaction was largely regioselective. Furthermore, the inulin fructose residues were monosubstituted. Gels with swelling ratios at equilibrium of up to ca. 20 were prepared by free radical polymerization of aqueous solutions of Inul-VA with different DS and monomer concentrations. Gel pore sizes were calculated from swelling experiments and range from 19 to 57 Å. To our knowledge, this work reports the first successful enzymatic modification of a polysaccharide solubilized in 100% DMF solution

    Duração do ciclo celular em mitose de diplóide de bananeira pela técnica de citometria de fluxo.

    Get PDF
    Os principais entraves da bananicultura são: falta de resistência às principais doenças e pragas, baixa produtividade e porte elevado de algumas cultivares. Uma das estratégias para a solução desses problemas é a criação de novas variedades, mediante o cruzamento de diplóides melhorados (AA) com triplóides (AAB) e tetraplóides artificiais (AAAB e AAAA), gerando híbridos tetraplóide e ou triplóides secundários. Para a obtenção de tetraplóides (AAAA) sintéticos a partir de diplóides é necessário realizar a duplicação de cromossomos, mediante o uso de agentes antimitóticos como a colchicina e a orizalina (PIO, 2008). O conhecimento do tempo de duração do ciclo celular da bananeira otimizará trabalhos de duplicação de cromossomos, especificamente em relação ao período de exposição aos agentes antimitóticos, que são muito tóxicos e podem causar a morte das plantas em tempos de exposição muito prolongados. Pio (2008), em trabalhos com duplicação de cromossomos de bananeira, relatou problemas com a morte de grande parte das plantas e perda de parcelas. Esse problema não teria ocorrido se as plantas ficassem em exposição aos agentes antimitóticos apenas no tempo de duração do ciclo celular e não em períodos muito longos, como 24 e 48 h, como aqueles usados na maioria dos trabalhos de duplicação cromossômica. Este procedimento poderia diminuir também o aparecimento de mixoplóides (células com diferentes números de cromossomos na mesma planta), que é um outro problema grave neste tipo de trabalho. A técnica para a obtenção da análise do ciclo celular usando a citometria de fluxo se baseia no estágio de divisão da célula no referido ciclo, registrada nos histogramas obtidos. Galbraith et al. (2002) e Sgorbati et al. (1986) entre outros, utilizaram esta técnica para estudar as diferenças de proporção de cada fase do ciclo celular, consoante os órgãos, partes dos órgãos e idade das plantas. Sandoval et al. (2003) efetuaram um estudo ao nível do ciclo celular em tecidos in vitro de coqueiro de forma a controlar a sua regeneração. Mediante o exposto, este trabalho teve como objetivo a observação do período do ciclo celular do diplóide NBA-14 de bananeira, com o uso da técnica de citometria de fluxo.pdf 208

    Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells

    Get PDF
    Control of self-renewal and differentiation of human ES cells (hESCs) remains a challenge. This is largely due to the use of culture systems that involve poorly defined animal products and do not mimic the normal developmental milieu. Routine protocols involve the propagation of hESCs on mouse fibroblast or human feeder layers, enzymatic cell removal, and spontaneous differentiation in cultures of embryoid bodies, and each of these steps involves significant variability of culture conditions. We report that a completely synthetic hydrogel matrix can support (i) long-term self-renewal of hESCs in the presence of conditioned medium from mouse embryonic fibroblast feeder layers, and (ii) direct cell differentiation. Hyaluronic acid (HA) hydrogels were selected because of the role of HA in early development and feeder layer cultures of hESCs and the controllability of hydrogel architecture, mechanics, and degradation. When encapsulated in 3D HA hydrogels (but not within other hydrogels or in monolayer cultures on HA), hESCs maintained their undifferentiated state, preserved their normal karyotype, and maintained their full differentiation capacity as indicated by embryoid body formation. Differentiation could be induced within the same hydrogel by simply altering soluble factors. We therefore propose that HA hydrogels, with their developmentally relevant composition and tunable physical properties, provide a unique microenvironment for the selfrenewal and differentiation of hESCs

    Selection of somaclonal variants of the cultivar 'Prata-Anã' for resistance to Fusarium Oxysporum F. sp. Cubense Race.

    Get PDF
    The banana tree is one of the most cultivated fruit globally; however, some diseases significantly affect its production, such as Fusarium wilt. The most appropriate measure for controlling this disease in areas with inoculum pressure is the use of resistant cultivars. Therefore, this study aimed to generate banana somaclones of the cultivar ?Prata-Anã? resistant to Fusarium wilt by inducing somaclonal variation. ?Prata-Anã? stem apexes were established in vitro in MS culture medium and, on a monthly basis, subcultivated in AIA and adenine sulfate supplemented MS medium with added plant regulators: 6-benzylaminopurine (BAP, 4 ml L-1), Thidiazuron (TDZ, 1 ml L-1), and Paclobutrazol (PBZ, 10 ml L-1). The treatments were: T0: no regulator, T1: BAP, T2: TDZ, T3: PBZ, T4: BAP + TDZ, T5: BAP + PBZ, T6: TDZ + PBZ, and T7: BAP + TDZ + PBZ. After the twelfth subculture, the regenerated plants were planted in boxes containing sterile soil infected with Fusarium oxysporum f. sp. cubense, and evaluated after 90 days for resistance to the pathogen. Somaclonal variants T2-1 and T2-2, generated in Treatment 2, with TDZ, were selected as resistant. This result is promising for the launch of a new Fusarium race 1-resistant banana variety

    Fractional order dynamical systems and its applications

    Get PDF
    This article illustrates several applications of fractional calculus (FC) in science and engineering. It has been recognized the advantageous use of this mathematical tool in the modeling and control of many dynamical systems. In this perspective, this paper investigates the use of FC in the following fields: Controller tuning; Electrical systems; Traffic systems; Digital circuit synthesis; Evolutionary computing; Redundant robots; Legged robots; Robotic manipulators; Nonlinear friction; Financial modeling.N/

    Phytochemical Analysis and Antimicrobial, Antinociceptive, and Anti-Inflammatory Activities of Two Chemotypes of Pimenta pseudocaryophyllus

    Get PDF
    Preparations from Pimenta pseudocaryophyllus (Gomes) L.R. Landrum (Myrtaceae) have been widely used in Brazilian folk medicine. This study aims to evaluate the antimicrobial activity of the crude ethanol extracts, fractions, semipurified substances, and essential oils obtained from leaves of two chemotypes of P. pseudocaryophyllus and to perform the antinociceptive and anti-inflammatory screening. The ethanol extracts were purified by column chromatography and main compounds were spectrally characterised (1D and 2D 1H and 13C NMR). The essential oils constituents were identified by GC/MS. The broth microdilution method was used for testing the antimicrobial activity. The abdominal contortions induced by acetic acid and the ear oedema induced by croton oil were used for screening of antinociceptive and anti-inflammatory activities, respectively. The phytochemical analysis resulted in the isolation of pentacyclic triterpenes, flavonoids, and phenol acids. The oleanolic acid showed the best profile of antibacterial activity for Gram-positive bacteria (31.2–125 μg mL−1), followed by the essential oil of the citral chemotype (62.5–250 μg mL−1). Among the semipurified substances, Ppm5, which contained gallic acid, was the most active for Candida spp. (31.2 μg mL−1) and Cryptococcus spp. (3.9–15.6 μg mL−1). The crude ethanol extract and fractions from citral chemotype showed antinociceptive and anti-inflammatory effects

    Exosomes secreted by cardiomyocytes subjected to ischaemia promote cardiac angiogenesis

    Get PDF
    Funding Information: This work was supported by European Regional Development Fund (FEDER) through the Operational Program for Competitiveness Factors (COMPETE) [HealthyAging2020 CENTRO-01-0145-FEDER-000012-N2323, POCI-01-0145-FEDER-016385, POCI-01-0145-FEDER-007440 to CNC.IBILI, POCI-01-0145-FEDER-007274 to i3S/INEB and NORTE-01-0145-FEDER-000012 to T.L.L.]; national funds through the Portuguese Foundation for Science and Technology (FCT) [PTDC/SAU-ORG/119296/2010, PTDC/ NEU-OSD/0312/2012, PESTC/ SAU/UI3282/2013-2014, MITP-TB/ECE/0013/ 2013, FCT-UID/NEU/04539/2013], PD/BD/52294/2013 to T.M.R.R., SFRH/ BD/85556/2012 (co-financed by QREN) to V.C.S]; Lisboa Portugal Regional Operational Programme (LISBOA 2020) and Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement; and by INFARMED Autoridade Nacional do Medicamento e Produtos de Saúde, I.P. [FIS-FIS-2015-01_CCV_20150630-157]. Publisher Copyright: © 2017 The Author.Aims Myocardial infarction (MI) is the leading cause of morbidity and mortality worldwide and results from an obstruction in the blood supply to a region of the heart. In an attempt to replenish oxygen and nutrients to the deprived area, affected cells release signals to promote the development of new vessels and confer protection against MI. However, the mechanisms underlying the growth of new vessels in an ischaemic scenario remain poorly understood. Here, we show that cardiomyocytes subjected to ischaemia release exosomes that elicit an angiogenic response of endothelial cells (ECs). Methods and results Exosomes secreted by H9c2 myocardial cells and primary cardiomyocytes, cultured either in control or ischaemic conditions were isolated and added to ECs. We show that ischaemic exosomes, in comparison with control exosomes, confer protection against oxidative-induced lesion, promote proliferation, and sprouting of ECs, stimulate the formation of capillary-like structures and strengthen adhesion complexes and barrier properties. Moreover, ischaemic exosomes display higher levels of metalloproteases (MMP) and promote the secretion of MMP by ECs. We demonstrate that miR-222 and miR-143, the relatively most abundant miRs in ischaemic exosomes, partially recapitulate the angiogenic effect of exosomes. Additionally, we show that ischaemic exosomes stimulate the formation of new functional vessels in vivo using in ovo and Matrigel plug assays. Finally, we demonstrate that intramyocardial delivery of ischaemic exosomes improves neovascularization following MI. Conclusions This study establishes that exosomes secreted by cardiomyocytes under ischaemic conditions promote heart angiogenesis, which may pave the way towards the development of add-on therapies to enhance myocardial blood supply.publishersversionpublishe
    corecore