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Abstract: This article illustrates several applications of
fractional calculus (FC) in science and engineering. It has
been recognized the advantageous use of this mathematical
tool in the modeling and control of many dynamical
systems. In this perspective, this paper investigates the use
of FC in the following fields:

 Controller tuning;
 Electrical systems;
 Traffic systems;
 Digital circuit synthesis;
 Evolutionary computing;
 Redundant robots;
 Legged robots;
 Robotic manipulators;
 Nonlinear friction;
 Financial modeling.
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1. INTRODUCTION

In recent years fractional calculus (FC) has been a
fruitful field of research in science and engineering [1-6]. In
fact, many scientific areas are currently paying attention to
the FC concepts and we can refer its adoption in
viscoelasticity and damping, diffusion and wave
propagation, electromagnetism, chaos and fractals, heat
transfer, biology, electronics, signal processing, robotics,
system identification, traffic systems, genetic algorithms,
percolation, modeling and identification,
telecommunications, chemistry, irreversibility, physics,
control systems, economy and finance.

The FC deals with derivatives and integrals to an
arbitrary order (real or, even, complex order). The
mathematical definition of a derivative/integral of fractional
order has been the subject of several different approaches
[1-3]. For example, the Laplace definition of a fractional
derivative/integral of a signal x(t) is:
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where nn 1 , 0 . The Grünwald-Letnikov
definition is given by ():
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where is the Gamma function and h is the time increment.
Expression (2) shows that fractional-order operators are
“global” operators having a memory of all past events,
making them adequate for modeling memory effects in most
materials and systems.

Bearing these ideas in mind, sections 2-15 present several
applications of FC in science and engineering. In section 16
we draw the main conclusions.

2. TUNING OF PID CONTROLLERS USING
FRACTIONAL CALCULUS CONCEPTS

The PID controllers are the most commonly used control
algorithms in industry. Among the various existent schemes
for tuning PID controllers, the Ziegler-Nichols (Z-N)
method is the most popular and is still extensively used for
the determination of the PID parameters. It is well known
that the compensated systems, with controllers tuned by this
method, have generally a step response with a high percent
overshoot. Moreover, the Z-N heuristics are only suitable
for plants with monotonic step response.

In this section we study a novel methodology for tuning
PID controllers such that the response of the compensated
system has an almost constant overshoot defined by a
prescribed value. The proposed method is based on the
minimization of the integral of square error (ISE) between
the step responses of a unit feedback control system, whose
open-loop transfer function L(s) is given by a fractional-
order integrator and that of the PID compensated system [7].

Figure 1 illustrates the fractional-order control system
that will be used as reference model for the tuning of PID
controllers. The open-loop transfer function L(s) is defined
as ():
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where c is the gain crossover frequency, that is,
|L(jc)| = 1. The parameter is the slope of the magnitude
curve, on a log-log scale, and may assume integer as well
noninteger values. In this study we consider 1 < < 2, such
that the output response may have a fractional oscillation
(similar to an underdamped second-order system). This
transfer function is also known as the Bode’s ideal loop
transfer function since Bode studies on the design of
feedback amplifiers in the 1940’s [8].

The Bode diagrams of amplitude and phase of L(s) are
illustrated in Fig. 2. The amplitude curve is a straight line of
constant slope 20dB/dec, and the phase curve is a
horizontal line positioned at /2 rad. The Nyquist curve is
simply the straight line through the origin,
arg L(j) = /2 rad.

This choice of L(s) gives a closed-loop system with the
desirable property of being insensitive to gain changes. If
the gain changes the crossover frequency c will change but
the phase margin of the system remains
PM = (1 /2) rad, independently of the value of the gain.
This can be seen from the curves of amplitude and phase of
Fig. 2.

The closed-loop transfer function of fractional-order
control system of Fig. 1 is given by:
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Fig. 1. Fractional-order control system with open-loop transfer
function L(s)
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Fig. 2. Bode diagrams of amplitude and phase of L(j) for 1 << 2

The unit step response of G(s) is given by the
expression:
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For the tuning of PID controllers we address the
fractional-order transfer function (4) as the reference system
[9]. With the order and the crossover frequency c we can
establish the overshoot and the speed of the output response,
respectively. For that purpose we consider the closed-loop
system shown in Fig. 3, where Gc(s) and Gp(s) are the PID
controller and the plant transfer functions, respectively.

The transfer function of the PID controller is:
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where E(s) is the error signal and U(s) is the controller’s
output. The parameters K, Ti, and Td are the proportional
gain, the integral time constant and the derivative time
constant of the controller, respectively.

The design of the PID controller will consist on the
determination of the optimum PID set gains (K, Ti, Td) that
minimize J, the integral of the square error (ISE), defined
as:
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where y(t) is the step response of the closed-loop system
with the PID controller (Fig. 3) and yd(t) is the desired step
response of the fractional-order transfer function (4) given
by expression (5).

To illustrate the effectiveness of proposed methodology
we consider the third-order plant transfer function:
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with nominal gain Kp = 1.

Figure 4 shows the step responses and the Bode
diagrams of phase of the closed-loop system with the PID
for the transfer function Gp(s) for gain variations around the
nominal gain (Kp = 1) corresponding to Kp = {0.6, 0.8, 1.0,
1.2, 1.4}, that is, for a variation up to 40% of its nominal
value. The system was tuned for = 3/2 (PM = 45º),
c = 0.8 rad/s. We verify that we get the same desired iso-
damping property corresponding to the prescribed (, c)-
values.

G c(s ) Gp(s)
r(t) e(t ) y (t )



PID Controller Plant

u(t)

Fig. 3. Closed-loop control system with PID controllerGc(s)
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Fig. 4. Bode phase diagrams and step responses for the closed-loop
system with a PID controller for Gp(s). The PID parameters are

K = 1.9158, Ti = 1.1407 and Td = 0.9040

In fact, we observe that the step responses have an
almost constant overshoot independently of the variation of
the plant gain around the gain crossover frequency c.
Therefore, the proposed methodology is capable of
producing closed-loop systems robust to gain variations and
step responses exhibiting an iso-damping property. The
proposed method was tested on several cases studies
revealing good results. It was also compared with other
tuning methods showing comparable or superior results [9].

3. FRACTIONAL PD CONTROL OF A HEXAPOD
ROBOT

Walking machines allow locomotion in terrain
inaccessible to other type of vehicles, since they do not need
a continuous support surface, but at the cost of higher
requirements for leg coordination and control. For these
robots, joint level control is usually implemented through a
PID like scheme with position feedback. Recently, the
application of the theory of FC to robotics revealed
promising aspects for future developments [10]. With these
facts in mind, this study compares different Fractional PD

robot controller tuning, applied to the joint control of a
walking system (Fig. 5) with n = 6 legs, equally distributed
along both sides of the robot body, having each three
rotational joints (i.e., j = {1, 2, 3} ≡{hip, knee, ankle}) [11].

During this study leg joint j = 3 can be either mechanical
actuated or motor actuated (Fig. 5). For the mechanical
actuated case, we suppose that there is a rotational pre-
tensioned spring-dashpot system connecting leg links Li2 and
Li3 . This mechanical impedance maintains the angle between
the two links while imposing a joint torque [11].

Figure 5 presents the dynamic model for the hexapod
body and foot-ground interaction. It is considered robot
body compliance because walking animals have a spine that
allows supporting the locomotion with improved stability.
The robot body is divided in n identical segments (each with

mass Mbn
1) and a linear spring-damper system (with

parameters defined so that the body behaviour is similar to
the one expected to occur on an animal) is adopted to
implement the intra-body compliance [11]. The contact of
the ith robot feet with the ground is modelled through a non-
linear system [12], being the values for the parameters based
on the studies of soil mechanics [12].

The general control architecture of the hexapod robot is
presented in Fig. 6 [13]. In this study we evaluate the effect
of different PD, , controller implementations for
Gc1(s), while Gc2 is a proportional controller with gain
Kpj = 0.9 (j = 1, 2, 3). For the PDalgorithm, implemented
through a discrete-time 4th-order Padé approximation (aij, bij

, j 1, 2, 3), we have:
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where Kpj and Kj are the proportional and derivative gains,
respectively, and j is the fractional order, for joint j.
Therefore, the classical PD1 algorithm occurs when the
fractional order j = 1.0.

It is analysed the system performance of the different
PD tuning, during a periodic wave gait at a constant
forward velocity VF, for two cases: two leg joints are motor
actuated and the ankle joint is mechanical actuated and the
three leg joints are fully motor actuated [11].

The analysis is based on the formulation of two indices
measuring the mean absolute density of energy per traveled
distance (Eav) and the hip trajectory errors (xyH) during
walking, according to:
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To tune the different controller implementations we
adopt a systematic method, testing and evaluating several
possible combinations of parameters, for all controller
implementations. Therefore, we adopt the Gc1(s) parameters
that establish a compromise in what concerns the
simultaneous minimisation of Eav and xyH. Moreover, it is
assumed high performance joint actuators, with a maximum
actuator torque of ijMax = 400 Nm, and the desired angle
between the foot and the ground (assumed horizontal) is
made θi3hd = 5º. We tune the PD joint controllers for
different values of the fractional order j while making
1 = 2 = 3.

We start by considering that leg joints 1 and 2 are motor
actuated and joint 3 is mechanical actuated. For this case we
tune the FO PDjoint controllers for different values of the
fractional order j in the interval 0.9 < j < 0.9 and
j ≠0.0. Afterwards, we consider that joint 3 is also motor
actuated, and we repeat the controller tuning procedure
versus j.

For the first situation under study, we verify that the
value of j = 0.6 (Fig. 7), with the gains of the PD

controller being Kp1 = 2500, K1 = 800, Kp2 = 300, K2 = 100
and the parameters of the mechanical spring-dashpot system
for the ankle actuation being K3 = 1, B3 = 2, presents the best
compromise situation in what concerns the simultaneous
minimisation of xyH and Eav.
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Fig. 7. Locus of Eav vs.xyH for the different values ofin the Gc 1(s)
tuning, when establishing a compromise between the minimisation of
Eav and xyH, with Gc2 = 0.9, joints 1 and 2 motor actuated and joint 3

mechanical actuated
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Fig. 8. Locus of Eav vs. xyH for the different values of in the Gc1(s)
tuning, when establishing a compromise between the minimisation of

Eav and xyH, with Gc2 = 0.9 and all joints motor actuated

Regarding the case when all joints are motor actuated,
Fig. 8 presents the best controller tuning for different values
of j. The experiments reveal the superior performance of
the PD controller for αj ≈0.5, with Kp1 = 15000,
K1 = 7200, Kp2 = 1000, K2 = 800 and Kp3 = 150, K3 = 240.

For values of j = {0.1, 0.2, 0.3, 0.4}, the results are very
poor and for 0.9 < j < 0.1 and j = 0.9, the hexapod
locomotion is unstable. Furthermore, we conclude that the
best case corresponds to all leg joints being motor actuated.

In conclusion, the experiments reveal the superior
performance of the FO controller for αj ≈0.5 and a robot
with all motor actuated joints, as can be concluded analysing
the curves for the joint actuation torques 1jm (Fig. 9) and for
the hip trajectory tracking errors 1xH and 1yH (Fig. 10).
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controller tuning with all joints motor actuated

Since the objective of the walking robots is to walk in
natural terrains, in the sequel it is examined how the
different controller tunings behave under different ground
properties, considering that all joints are motor actuated. For
this case, and considering the previously tuning controller
parameters, the values of {KxF, BxF, KyF, ByF} are varied
simultaneously through a multiplying factor Kmult that is
varied in the range [0.1, 4.0]. This variation for the ground
model parameters allows the simulation of the ground
behaviour for growing stiffness, from peat to gravel [12].

The performance measure Eav versus the multiplying
factor of the ground parameters Kmult is presented on Fig. 11.
Analysing the system performance from the viewpoint of
the index Eav, it is possible to conclude that the best FO PD

implementation occurs for the fractional order j = 0.5.
Moreover, it is clear that the performances of the different
controller implementations are almost constant on all range
of the ground parameters, with the exception of the
fractional order j = 0.4. For this case, Eav presents a
significant variation with Kmult. Therefore, we conclude that
the controller responses are quite similar, meaning that these
algorithms are robust to variations of the ground
characteristics [13].

4. SIMULATION AND DYNAMICAL ANALYSIS OF
FREEWAY TRAFFIC SYSTEMS

4.1. Simulation Package

In order to study the dynamics of traffic systems it was
developed the Simulator of Intelligent Transportation
Systems (SITS). SITS is a software tool based on a
microscopic simulation approach, which reproduces real
traffic conditions in an urban or non-urban network. The
program provides a detailed modelling of the traffic
network, distinguishing between different types of vehicles
and drivers and considering a wide range of network
geometries. SITS uses a flexible structure that allows the
integration of simulation facilities for any of the ITS related
areas [14]. The overall model structure is represented on
Fig. 12.

Fig. 12. SITS overall model structure
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Fig. 13. SITS state diagram: 1-aceleration, 2-braking, 3-cruise speed,
4-stopped, 5-collision

SITS models each vehicle as a separate entity in the
network according to the state diagram showing in Fig. 13.
Therefore, are defined five states {1-aceleration, 2-braking,
3-cruise speed, 4-stopped, 5-collision} that represent the
possible vehicle states in a traffic systems.

In this modelling structure, so called State-Oriented
Modelling (SOM) [15], every single vehicle in the network
has one possible state for each sampling period. The
transition between each state depends on the driver
behaviour model and its surrounding environment. Some
transitions are not possible; for instance, it is not possible to
move from state #4 (stopped) to state #2 (braking), although
it is possible to move from state #2 to state #4.

Included on the most important elements of SITS are the
network components, travel demand, and driving decisions.
Network components include the road network geometry,
vehicles and the traffic control. To each driver is assigned a
set of attributes that describe the drivers behavior, including
desired speed, and his profile (e.g., from conservative to
aggressive). Likewise, vehicles have their own
specifications, including size and acceleration capabilities.
Travel demand is simulated using origin destination
matrices given as an input to the model.

At this stage of development the SITS implements
different types of driver behaviour models, namely car
following, free flow and lane changing logic [16].

4.2. Dynamical Analysis

In the dynamical analysis are applied tools of systems
theory. In this line of thought, a set of simulation
experiments are developed in order to estimate the influence
of the vehicle speed v(t;x), the road length l and the number
of lanes nl in the traffic flow (t;x) at time t and road
coordinate x. For a road with nl lanes the Transfer Function
(TF) between the flow measured by two sensors is
calculated by the expression:

Gr,k (s; x j,x i) = r(s;xj)/k(s;xi) (11)

where k, r = 1,2,…, nl define the lane number and, xi and xj

represent the road coordinates (0 xi xj l), respectively
It should be noted that traffic flow is a stochastic system but,
in the sequel, it is shown that the Laplace transform can be
used to analyse the system dynamics.

The first group of experiments considers a one-lane road
(i.e., k = r = 1) with length l = 1000 m. Across the road are

placed ns sensors equally spaced. The first sensor is placed
at the beginning of the road (i.e., at xi = 0) and the last
sensor at the end (i.e., at x j = l). Therefore, we calculate the
TF between two traffic flows at the beginning and the end of
the road such that, 1(t;0) [1, 8] vehicles sfor a vehicle
speed v1(t;0)[30, 70] km h, that is, for v1(t;0) [vav

v, vavv], where vav = 50 km his the average vehicle
speed and v = 20 km his the maximum speed variation.
These values are generated according to a uniform
probability distribution function.

The results obtained of the polar plot for the TF
G1,1(s;1000,0) = 1(s;1000)/(s;0) between the traffic flow
at the beginning and end of the one-lane road is distinct
from those usual in systems theory revealing a large
variability, as revealed by Fig. 14. Moreover, due to the
stochastic nature of the phenomena involved different
experiments using the same input range parameters result in
different TFs.

In fact traffic flow is a complex system but it was shown
[17] that, by embedding statistics and Fourier transform
(leading to the concept of Statistical Transfer Function
(STF)), we could analyse the system dynamics in the
perspective of systems theory [18].

To illustrate the proposed modelling concept (STF), the
simulation was repeated for a sample of n = 2000 and it was
observed the existence of a convergence of the STF,
T1,1(s;1000,0), as show in Fig. 15, for a one-lane road with
length l = 1000 m 1(t;0) [1, 8] vehicles s and
v1(t;0)[30, 70] km h
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Fig. 14. The Polar Diagram of TF G1,1(s ;1000,0) with1(t;0) [1, 8]
vehicles s1 and v1(t;0) [30, 70] km h1 (vav = 50 km h1,

v = 20 km h1, l = 1000 m and n l = 1)
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Fig. 15. The STF T1,1(s;1000,0) for n = 2000 experiments with
1(t;0) [1, 8] vehicles sand v1(t;0) [30, 70] km h(vav = 50 km h,

v = 20 km h, l = 1000 m and n l = 1)
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The chart has characteristics similar to those of a low-
pass filter with time delay, common in systems involving
transport phenomena. Nevertheless, in our case we need to
include the capability of adjusting the description to the
continuous variation of the system working conditions. This
requirement precludes the adoption of the usual integer-
order low-pass filter and points out the need for the adoption
of a fractional-order TF. Therefore, in this case we adopt a
fractional-order system with time delay [1, 3].

1,1( ;1000,0)

1

s
Bk e

T s
s
p




 

 
 

(12)

With this description we get not only a superior
adjustment of the numerical data, impossible with the
discrete steps in the case of integer-order TF, but also a
mathematical tool more adapted to the dynamical
phenomena involved. For fitting (12) with the numerical
data it is adopted a two-step method based on the
minimization of the quadratic error. In the first phase (kB, p,
are obtained through error amplitude minimization of the
Bode diagram. Once established (kB, p, , in a second
phase, is estimated through the error minimization in the
Polar diagram.

For the numerical parameters of Fig. 15 we get kB = 1.0,
= 96.0 sec, p = 0.07 and = 1.5. The parameters (, p, )
vary with the average speed vav and its range of variation v,
the road length l and the input vehicle flow 1 . For example,
Fig. 16 shows (, p, versus v for vav = 50 km h.

It is interesting to note that (, p)  (, 0), when v 
vav, and (, p)  (l vav

1, ), when v  0. These results are
consistent with our experience that suggests a pure transport
delay T(s) es (= l vav

1), v  0 and T(s) 0, when
v  vav (because of the existence of a blocking cars, with
zero speed, on the road).

In a second group of experiments are analyzed the
characteristics of the STF matrix for roads with two lanes
considering identical traffic conditions (i.e.,
k(t;0) [0.12, 1] vehicles s, k = 1,2, l = 1000, v = 20 km
h). Fig. 17 depicts the amplitude Bode diagram of
T1,1(s;1000,0) and T1,2(s;1000,0) for vav = 50 km h (i.e.,
vk(t;0) [30, 70] km h).

We verify that T1,1(s;1000,0) ≈ T2 ,2(s;1000,0) and
T1,2(s;1000,0) ≈T2,1(s;1000,0). This property occurs because
SITS uses lane change logic where, after the overtaking, the
vehicle tries to return to the previous lane. Therefore, lanes
1 and 2 have the same characteristics leading to identical
STF [19].

The STF parameter dependence is similar to the one-lane
case represented previously. Fig. 18a) and 18b) show the
variation of parameters (kBp, for T1,1(s;1000,0) versus
vav (with v = 20 km h) and v (with vav = 50 km h),
respectively, for nl = 2.
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Fig. 16. Time delay , pole p and fractional orderversus v for an
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We conclude that:
i. he time delay is independent of the number of lanes

nl (considering the same input flow 1(t;0)).
ii. For a fixed set of parameters we have for each STF

gain bandwidth ≈constant.
iii. For each row of the transfer matrix, the sum of the STF

gains is the unit.
iv. The gains and the poles of the diagonal elements of the

STF matrix are similar. The gain of the non-diagonal
elements, that represent dynamic coupling between the
lanes, are lower (due to iii), but the corresponding pole
are higher (due to ii).

v. The fractional order increases with vav. Nevertheless,
the higher the number of lanes the lower the low-pass
filter effect, that is, the smaller the value of .

5. FRACTIONAL DYNAMICS IN THE
TRAJECTORY CONTROL OF REDUNDANT
MANIPULATORS

A kinematically redundant manipulator is a robotic arm
possessing more degrees of freedom (dof) than those
required to establish an arbitrary position and orientation of
the gripper. Redundant manipulators offer several potential
advantages over non-redundant arms. In a workspace with
obstacles, the extra degrees of freedom can be used to move
around or between obstacles and thereby to manipulate in
situations that otherwise would be inaccessible [20-23].

When a manipulator is redundant, it is anticipated that
the inverse kinematics admits an infinite number of
solutions. This implies that, for a given location of the
manipulator’s gripper, it is possible to induce a self-motion
of the structure without changing the location of the end
effecter. Therefore, the arm can be reconfigured to find
better postures for an assigned set of task requirements.

Several kinematic techniques for redundant manipulators
control the gripper through the rates at which the joints are
driven, using the pseudoinverse of the Jacobian [22, 25].
Nevertheless, these algorithms lead to a kind of chaotic
motion with unpredictable arm configurations.

Having these ideas in mind, sub-section 5.1 introduces
the fundamental issues for the kinematics of redundant
manipulators. Based on these concepts, sub-section 5.2
presents the trajectory control of a three dof robot. The
results reveal a chaotic behavior that is further analyzed in
sub-section 5.3.

5.1. Kinematics of redundant manipulators

A kinematically redundant manipulator is a robotic arm
possessing more dof than those required to establish an
arbitrary position and orientation of the gripper. In Fig. 19 is
depicted a planar manipulator with k rotational (R) joints
that is redundant for k > 2. When a manipulator is redundant
it is anticipated that the inverse kinematics admits an infinite
number of solutions. This implies that, for a given location
of the manipulator’s gripper, it is possible to induce a self-
motion of the structure without changing the location of the
gripper. Therefore, redundant manipulators can be
reconfigured to find better postures for an assigned set of
task requirements but, on the other hand, have a more
complex structure requiring adequate control algorithms.

0

y

x

q2

q1

qk

l1

l2

lk

Fig. 19. A planar redundant planar manipulator with k rotational
joints

We consider a manipulator with n degrees of freedom
whose joint variables are denoted by q = [q1 , q2, ..., qn]T. We
assume that a class of tasks we are interested in can be
described by m variables, x = [x1 , x2, ..., xm]T (m < n) and that
the relation between q and x is given by:

fx = q (13)

where f is a function representing the direct kinematics.

Differentiating (13) with respect to time yields:

x = J q q (14)

where mx , nq and   m nf  J q q q .
Hence, it is possible to calculate a path q(t) in terms of a
prescribed trajectory x(t) in the operational space. We
assume that the following condition is satisfied:

max rank J(q)= m (15)

Failing to satisfy this condition usually means that the
selection of manipulation variables is redundant and the
number of these variables m can be reduced. When
condition (14) is verified, we say that the degree of
redundancy of the manipulator is nm. If, for some q we
have:

rank J(q)< m (16)

then the manipulator is in a singular state. This state is not
desirable because, in this region of the trajectory, the
manipulating ability is very limited.

Many approaches for solving redundancy [24, 27] are
based on the inversion of equation (14). A solution in terms
of the joint velocities is sought as:

#q = J q x  (17)

where #J is one of the generalized inverses of the J [26-
28]. It can be easily shown that a more general solution to
equation (14) is given by:

  0
 
  

+ +q = J q x + I - J q J q q  (18)
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where I is the n n identity matrix and 0
nq is a n 1

arbitrary joint velocity vector and J is the pseudoinverse
of the J . The solution (18) is composed of two terms. The
first term is relative to minimum norm joint velocities. The
second term, the homogeneous solution, attempts to satisfy
the additional constraints specified by 0q . Moreover, the

matrix I J q J q allows the projection of 0q in the
null space of J. A direct consequence is that it is possible to
generate internal motions that reconfigure the manipulator
structure without changing the gripper position and
orientation [27-30]. Another aspect revealed by the solution
of (17) is that repetitive trajectories in the operational space
do not lead to periodic trajectories in the joint space. This is
an obstacle for the solution of many tasks because the
resultant robot configurations have similarities with those of
a chaotic system.

5.2. Robot trajectory control

The direct kinematics and the Jacobian of a 3-link planar
manipulator with rotational joints (3R robot) has a simple
recursive nature according with the expressions:

1 1 2 12 3 123

1 1 2 12 3 123

l C l C l Cx
y l S l S l S

  
      

(19a)

1 1 3 123 3 123

1 1 3 123 3 123

l S l S l S

l C l C l C

    
    

J
... ...

... ...
(19b)

where li is the length of link i, q q ... qi...k i k   ,

 S Sin qi...k i...k and  C Cos qi...k i...k .

During all the experiments it is considered
310 sect  , 31 2 3L l l lTOT     and 1 2 3l l l  .

In the closed-loop pseudoinverse’s method the joint
positions can be computed through the time integration of
the velocities according with the block diagram of the
inverse kinematics algorithm depicted in Fig. 20 where xref

represents the vector of reference coordinates of the robot
gripper in the operational space.

Based on equation (19) we analyze the kinematic
performances of the 3R-robot when repeating a circular
motion in the operational space with frequency ω0 = 7.0 rad
sec, centre at distance r = [x2+y2]1/2 and radius.

Figure 21 show the joint positions for the inverse
kinematic algorithm (17) for r = {0.6, 2.0} and = {0.3,
0.5}. We observe that:

- For r = 0.6 occur unpredictable motions with severe
variations that lead to high joint transients [31].
Moreover, we verify a low frequency signal
modulation that depends on the circle being executed.
- For r = 2.0 the motion is periodic with frequency
identical toω0 = 7.0 rad sec.

Fig. 20. Block diagram of the closed-loop inverse kinematics algorithm
with the pseudoinverse
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Fig. 21. The 3R-robot joint positions versus time using the
pseudoinverse method for r = {0.6, 2.0} and = {0.3, 0.5}

5.3. Analysis of the robot trajectories

In the previous section we verified that the
pseudoinverse based algorithm leads to unpredictable arm
configurations. In order to gain further insight into the
pseudoinverse nature several distinct experiments are
devised in the sequel during a time window of 300 cycles.
Therefore, in a first set of experiments we calculate the
Fourier transform of the 3R-robot joints velocities for a
circular repetitive motion with frequency ω0 = 7.0 rad sec,
radius = {0.1, 0.3, 0.5, 0.7} and radial distances
r ]0, LTOT [.

Figures 22-25 show  2F q t versus the frequency

ratio 0/and the distance r where F{ } represents the
Fourier operator. Is verified an interesting phenomenon
induced by the gripper repetitive motion 0 because a large
part of the energy is distributed along several sub-
harmonics. These fractional order harmonics (foh) depend
on r and making a complex pattern with similarities with
those revealed by chaotic systems. Furthermore, we observe
the existence of several distinct regions depending on r.

For example, selecting in Fig. 25 several distinct cases,
namely for r = {0.08, 0.30, 0.53, 1.10, 1.30, 2.00}, we have
the different signal Fourier spectra clearly visible in Fig. 26.
Joints 1 and 3 show similar velocity spectra.

In the author’s best knowledge the foh are aspects of
fractional dynamics [32-34], but a final and assertive
conclusion about a physical interpretation is a matter still to
be explored.

Trajectory
Planing

J#(q ) Delay

Direct
Kinematics


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Fig. 22 .  tqF 2 of the 3R-robot during 300 cycles, vs r and

/0, for = 0.1, ω0 = 7.0 rad
1sec

dB2qF 

0

r

foh

Fig. 23.  tqF 2 of the 3R-robot during 300 cycles, vs r and

/0, for = 0.3, ω0 = 7.0 rad 1sec
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Fig. 24.  tqF 2 of the 3R-robot during 300 cycles, vs r and

/0, for = 0.5, ω0 = 7.0 rad 1sec
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Fig. 25.  tqF 2 of the 3R-robot during 300 cycles, vs r and

/0, for = 0.7, ω0 = 7.0 rad 1sec
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Fig. 26.  tqF 2 of the 3R-robot during 300 cycles, vs the

frequency ratio /0, for r = {0.08, 0.30, 0.53, 1.10, 1.30, 2.00}, = 0.7,

ω0 = 7.0 rad
1sec

For joints velocities 1 and 3 the results are similar to the
verified ones for joint velocity 2.

6. DESCRIBING FUNCTION OF SYSTEMS WITH
NONLINEAR FRICTION

This section studies the describing function (DF) of
systems composed of a mass subjected to nonlinear friction.
The friction force is decomposed in three components
namely, the viscous, the Coulomb and the static forces. The
system dynamics is analyzed in the DF perspective and the
reliability of the DF method is evaluated through the signal
harmonic content.

6.1. Introduction

The phenomenon of vibration due to friction occurs in
many branches of technology where it plays a very useful
role. On the other hand, its occurrence is often undesirable,
because it causes additional dynamic loads, as well as faulty
operation of machines and devices. Despite many
investigations that have been carried out so far, this
phenomenon is not yet fully understood, mainly due to the
considerable randomness and diversity of reasons
underlying the energy dissipation involving the dynamic
effects [35, 40, 41]. These nonlinear dynamic phenomena
have been an active area of research but well established
conclusions are still lacking.

In this section we investigate the dynamics of systems
that contain nonlinear friction namely the Coulomb and the
static forces in addition to the linear viscous, component.
Bearing these ideas in mind, the section is organized as
follows. Subsection 6.2 introduces the fundamental aspects
of the describing function method. Subsection 6.3 studies
the describing function of mechanical systems with
nonlinear friction.

6.2. Fundamental concepts

In this subsection we present a summary of the DF
method and its application on the prediction of limit cycles.

The purpose is to analyze the controller performance in the
presence of systems with nonlinear friction. Due to the
nonlinear nature of the problem a possible approach would
be the simulation of all possible systems which, obviously,
is a time consuming and fastidious task. Therefore, the
strategy taken here is to study the DF evolution in the
Nyquist diagram of each controller and plant. By this way,
we can study the stability and we can predict approximately
the occurrence and the characteristics of limit cycles.

It is a well-known fact that many relationships among
physical quantities are not linear, although they are often
approximated by linear equations, mainly for mathematical
simplicity. This simplification may be satisfactory as long as
the resulting solutions are in agreement with experimental
results. In fact, Cox [38] demonstrated that this is the case
with the approximation of nonlinear systems by a DF where
limit cycles can be predicted with reasonable accuracy. The
DF method is not the only one tractable to limit cycle
prediction; nevertheless, in the condition of limit cycle
occurrence all of the methods are equivalent to the DF
method [38].

Let us consider the feedback system of Fig. 27 with one
nonlinear element N and a linear system G(s).

Suppose that the input to a nonlinear element is
sinusoidal )sin()( tXtx  . In general the output of the
nonlinear element is not sinusoidal, but it is periodic, with
the same period as the input, containing higher harmonics in
addition to the fundamental harmonic component.

If we assume that the nonlinearity is symmetric with
respect to the variation around zero, the Fourier series
become:

  k
k

k tkYty 




cos
1

(20)

where kY and k are the amplitude and the phase shift of
the kth harmonic component of the output y(t), respectively.

In the DF analysis, we assume that only the fundamental
harmonic component of the output is significant. Such
assumption is often valid since the higher harmonics in the
output of a nonlinear element are usually of smaller
amplitude than the fundamental component. Moreover, most
control systems are “low-pass filters” with the result that the
higher harmonics are further attenuated.

Fig. 27. Nonlinear control system
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The DF, or sinusoidal DF, of a nonlinear element,
 ,XN , is defined as the complex ratio of the fundamental

harmonic component of the output y(t) and the input x(t) ,
that is:

  11,  je
X
Y

XN (21)

where the symbol N represents the DF, X is the amplitude of
the input sinusoid and 1Y and 1 are the amplitude and the
phase shift of the fundamental harmonic component of the
output, respectively. Several DFs of standard nonlinear
system elements can be found in the references [36, 37, 39].

For nonlinear systems that do not involve energy
storage, the DF is merely amplitude-dependent, that is N =
N(X). When dealing with nonlinear elements that store
energy, the DF method is both amplitude and frequency
dependent, that is, N = N(X, ). In this case, to determine
the DF usually we have a numerical approach rather than a
symbolic one because, in general, it is impossible to find a
closed-form solution for the differential equations that
model the nonlinear element. Nevertheless, it is possible to
calculate the approximate analytical expressions for such
DFs, namely with the aid of computer algebra packages.
Once calculated, the DF can be used for the approximate
stability analysis of a nonlinear control system.

Let us consider the standard control system shown in
Fig. 27 where the block N denotes the DF of the nonlinear
element. If the higher harmonics are sufficiently attenuated,
N can be treated as a real or complex variable gain and the
closed-loop frequency response becomes:

 
 

 
 





jNG
jNG

jR
jC

1
(22)

The characteristic equation is:

  01  jNG     
,

1
XN

jG (23)

If (23) can be satisfied for some value of X and , a limit
cycle is predicted for the nonlinear system. Moreover, since
(23) applies only if the nonlinear system is in a steady-state
limit cycle, the DF analysis predicts only the presence or the
absence of a limit cycle and cannot be applied to the
analysis of other types of time responses.

5.3. Systems with nonlinear friction

In this subsection we calculate the DF of a dynamical
system with nonlinear friction with a combination of the
viscous and Coulomb components and we study its
properties. Let us consider a system (Fig. 28a) with a mass
M, moving on a horizontal plane under the action of a force
f, with a friction effect composed of two components: a non-
linear Coulomb K part and a linear viscous B part (CV
model), (Fig. 28b).

The equation of motion in this system is as follows:

  tftFtxM f  (24)

where M is the system mass, tF f is the friction force and

tf the applied input force.

For the simple system of Figure 28a) we can calculate,
numerically, the polar plot of   ,1 FN considering as
input a sinusoidal force   tFtf  cos applied to mass M
and as output the position x(t).

Figure 29 shows the function ),(1  FN for several
values of F when M = 9 Kg, B = 0.5 Ns/m, K = 5 N.

Figure 30 illustrates the log-log plots of Re{1/N} and
Im{1/N} vs. the exciting frequency , for different values
of the input force F = {10, 50, 100} N. The charts reveal
that we have different results according to the excitation
force F, being it more visible for the imaginary component.

xx ,

Fig. 28. a) Elemental mass system subjected to nonlinear friction

x

Fig. 28. b) Non-linear friction with Coulomb, Viscous (CV model) and
Static components (CVS model)
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Fig 30. Log-log plots of Re{1/N} and Im{1/N} vs. the exciting
frequency for F = {10, 50, 100} N, with de CV model.

In Fig. 31 it is depicted the harmonic content of the
output signal x(t) for input forces of F = 10 N and F = 50 N.
From this charts we conclude that the output signal has a
half - wave symmetry, because the harmonics of even order
are negligible. Moreover, the fundamental component of the
output signal is the most important one, while the amplitude
of the high order harmonics decays significantly. Therefore,
we can conclude that, for the friction CV model, the DF
method leads to a good approximation.

In order to gain further insight into the system nature, we
repeat the experiment for different mass values M = {0.10,
0.25, 0.50, 1.0, 2.0, 3.0, 5.0, 7.0} Kg. The results shows that
the value of Re{1/N} and Im{1/N} fluctuate for different
M values.

To study the relation between Re{1/N} and Im{1/N}
versus F and M, we approximate the numerical results
through power functions:

    db cNaN  1Im,1Re (25)

Figure 32 illustrates the variation of the {a, b, c, d}
parameters with F and M. The {a, b, c, d} parameters can
also be approximated by heuristic analytical expressions,
namely:

  FFa
b 2.0

  FFc

 Fd ln

(26)

where F is the input force and   ,,,,,, are
parameters that depend on the mass M. We conclude that the
parameters and seems similar to K. Moreover, Re{1/N}
and Im{1/N} have distinct relationships with , namely
integer and fractional order dependences. The second case is
of utmost importance because it establishes a link towards
the area of fractional calculus [18, 42, 43] and it properties
of dynamical memory.

The results encourage further studies of nonlinear
systems in a similar perspective and the analysis of limit
cycle prediction.

Fig. 31. Fourier transform of the output position x(t), over 50 cycles for
the CV model, vs. the exciting frequencyand the harmonic frequency

index k for input forces F = 10 N and F = 50 N
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7. FRACTIONAL ORDER FOURIER SPECTRA IN
ROBOTIC MANIPULATORS WITH VIBRATIONS

This section presents a fractional calculus (FC)
perspective in the study of the robotic signals captured
during an impact phase of the manipulator. In the
experiment is used a steel rod flexible link. To test impacts,
the link consists on a long, thin, round, flexible steel rod
clamped to the end-effector of the manipulator. The robot
motion is programmed in a way such that the rod moves
against a rigid surface. During the motion of the manipulator
the clamped rod is moved by the robot against a rigid
surface. An impact occurs and several signals are recorded

with a sampling frequency of fs = 500 Hz. In order to
analyze the vibration and impact phenomena an acquisition
system was developed [44]. The instrumentation system
acquires signals from multiple sensors that capture the axis
positions, mass accelerations, forces and moments and
electrical currents in the motors. Afterwards, an analysis
package, running off-line, reads the data recorded by the
acquisition system and examines them.

Due to space limitations only some of the signals are
depicted. A typical time evolution of the electrical currents
of robot axis motors is shown in Fig. 33 corresponding to:
(i) the impact of the rod on a rigid surface and (ii) without
impact [45]. In this example, the signals present clearly a
strong variation at the instant of the impact that occurs,
approximately, at t = 4 sec.

In order to study the behavior of the signal Fourier
transform, a trendline can be superimposed over the
spectrum based on a power law approximation:

  mctf F (27)

where F{} is Fourier operator, c is a constant, ω is the
frequency and m is the slope.
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Figure 34 shows the amplitude of the Fast Fourier
Transform (FFT) of the axis 1 position signal. The trendline
(27) leads to a slope m = −0.99 revealing, clearly, the integer
order behavior. The others position signals were studied,
revealing also an integer behavior, both under impact and no
impact conditions.

Figure 35 shows the amplitude of the FFT of the
electrical current for the axis 3 motor. The spectrum was
also approximated by trendlines in a frequency range larger
than one decade. These trendlines (Fig. 34) have slopes of
m = −1.52 and m = −1.51 under impact (i) and without
impact (ii) conditions, respectively. The lines present a
fractional order behavior in both cases. The others axis
motor currents were studied, as well. Some of them, for a
limited frequency range, present also fractional order
behavior while others have a complicated spectrum difficult
to approximate by one trendline.

Figure 36 shows, as example, the spectrum of the Fz
force. This spectrum is not so well defined in a large
frequency range. All force/moments spectra present
identical behavior and, therefore, it is difficult to define
accurately the behavior of the signals.

Finally, Fig. 37 depicts the spectrum of the signal
captured from the accelerometer 1 located at the rod free-
end of the beam. Like the spectrum from the other
accelerometer located at the rod clamped-end, this spectrum
is spread and complicated. Therefore, it is difficult to define
accurately the slope of the signal and consequently its
behavior in terms of integer or fractional system.
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As shown in the examples, the Fourier spectrum of
several signals, captured during an impact phase of the
manipulator, presents a non integer behavior. On the other
hand, the feedback fractional order systems, due to the
success in the synthesis of real noninteger differentiator and
the emergence of fractional-order controllers [9], have been
designed and applied to control a variety of dynamical
processes [46]. Therefore the study presented here can assist
in the design of the control system to be used in eliminating
or reducing the effect of vibrations.

8. POSITION/FORCE CONTROL OF A ROBOTIC
MANIPULATOR

Raibert and Craig [47] introduced the concept of force
control based on the hybrid algorithm and, since then,
several researchers developed those ideas and proposed
other schemes [48].

There are two basic methods for force control, namely the
hybrid position/ force and the impedance schemes. The first
method separates the task into two orthogonal sub-spaces
corresponding to the force and the position controlled
variables. Once established the subspace decomposition two
independent controllers are designed. The second method
[48] requires the definition of the arm mechanical
impedance. The impedance accommodates the interaction
forces that can be controlled to obtain an adequate response.
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The dynamical equation of a n dof robot is:

(q)FJG(q))qC(q,qH(q)τ T  (28)

where is the n 1 vector of actuator torques, q is the n 1
vector of joint coordinates, H(q) is the n n inertia matrix,
 qq,C  is the n 1 vector of centrifugal/Coriolis terms and

G(q) is the n 1 vector of gravitational effects. The n m
matrix JT(q) is the transpose of the Jacobian matrix of the
robot and F is the m 1 vector of the force that the (m-
dimensional) environment exerts in the robot gripper.
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where Cij = cos(qi + qj) and Sij = sin(qi + qj).

The numerical values adopted for the 2R robot [49] are
m1 = 0.5 kg, m2 = 6.25 kg, r1 = 1.0 m, r2 = 0.8 m,
J1m = J2m = 1.0 kgm2 and J1g = J2g = 4.0 kgm2.

The constraint plane is determined by the angle (Fig.
38) and the contact displacement xc of the robot gripper with
the constraint surface is modeled through a linear system
with a mass M, a damping B and a stiffness K with
dynamics:

cccc KxxBxMF   (30)

In order to study the dynamics and control of one robot
we adopt the position/force hybrid control with the
implementation of the integer order and fractional-order
algorithms [5, 6, 32, 51]. The system performance and
robustness is analyzed in the time domain. The effect of
dynamic backlash and flexibility is also investigated.

Fig. 38. The 2R robot and the constraint surface

Fig. 39. The position/force hybrid controller

8.1. The Hybrid Controller

The structure of the position/force hybrid control
algorithm is depicted in Fig. 39. The diagonal n n
selection matrix S has elements equal to one (zero) in the
position (force) controlled directions and I is the n n
identity matrix. In this paper the yc (xc) cartesian coordinate
is position (force) controlled, yielding:
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where Cij = cos(qiqj) and Sij = sin(qiqj).

8.2. Controller Performances

This section analyzes the system performance both for
ideal transmissions and robots with dynamic phenomena at
the joints, such as backlash and flexibility. Moreover, we
compare the response of FO and the PD: CP(s) = Kp + Kd s
and PI: CF(s) = Kp + Ki s controllers, in the position and
force loops.

Both algorithms were tuned by trial and error having in
mind getting a similar performance in the two cases. The
resulting parameters were FO: {KP,P} {105 , 1/2},
{KF,F} {103,1/5} and PD/PI: {Kp,Kd} {104 ,103},
{Kp ,Ki} {103,102} for the position and force loops,
respectively. Moreover, it is adopted the operating point
{x,y} {1,1}, a constraint surface with parameters
{,M,B,K} {10 3,1.0,102} and a controller sampling
frequency fc = 1 kHz.

In order to study the system dynamics we apply,
separately, rectangular pulses, at the position and force
references, that is, we perturb the references with
{ycd,Fcd} = {101,0} and {ycd,F cd} = {0,101}.

Figures 40 and 41 depict the time response of the 2R robot
under the action of the FO and the PD/PI controllers for
ideal transmissions at the joints.
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Fig. 40. Time response for the 2R robot with ideal transmission at the
joints under the action of the FO and PD/PI controllers for a pulse
perturbation at the robot position reference
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Fig. 41. Time response for the 2R robot with ideal transmission at the
joints under the action of the FO and PD/PI controllers for a pulse
perturbation at the robot force reference

In a second phase (Fig. 42 and 43) we analyze the
response of a 2R robot with dynamic backlash at the joints.
For the ith joint gear, with clearance hi, the backlash reveals
impact phenomena between the inertias, which obey the
principle of conservation of momentum and the Newton
law:
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where 0 1 defines the type of impact (0 inelastic
impact, 1 elastic), iq and imq are the inertias velocities
of the joint and motor after the collision, and t J ii and Jim
stand for the link and motor ith joint inertias. In the
simulations is adopted hi = 1.8 104 rad and i 0.8 (i = 1,2).

In a third phase (Fig. 44 and 45) it is studied the case of
compliant joints, where the dynamic model corresponds to
(28) augmented by the equations:

 qqKqBqJτ mmmmmm   (33a)

     qGqq,CqqJqqK mm   (33b)
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Fig. 42. Time response for 2R robot with dynamic backlash at the
joints under the action of the FO and PD/PI controllers for a pulse
perturbation at the robot position reference.
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Fig. 44. Time response for 2R robot with flexibility at the joints under
the action of the FO and PD/PI controllers for a pulse perturbation at

the robot position reference.
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Fig. 45. Time response for 2R robot with flexibility at the joints under
the action of the FO and PD/PI controllers for a pulse perturbation at

the robot force reference.

where Jm, Bm and Km are the n n diagonal matrices of the
motor and transmission inertias, damping and stiffness,
respectively. In the simulations we adopt Kmi = 2 106 Nm
rad1 and Bmi = 104 Nms rad1 (i = 1,2).

The time responses (Tables 1 and 2), namely the percent
overshoot PO%, the steady-state error ess, the peak time Tp

and the settling time Ts, reveal that, although tuned for
similar performances in the first case, the FO is superior to
the PD/PI in the cases with dynamical phenomena at the
robot joints.

Table 1. Time response characteristics for a perturbation ycd.

joint PO% ess Tp Ts

PID 23.48% 99 103 0.122 0.013
ideal

FO 18.98% 79 103 0.033 0.018
PID 0.37% 2.1 103 0.383 0.080

backlash
FO 0.36% 1.4 104 0.302 0.118
PID 2.28% 3.9 103 0.403 1.502flexible
FO 1.80% 1.4 103 0.302 3.004

Table 2. Time response characteristics for a perturbation Fcd.

joint PO% ess Tp Ts

PID 22.04% 1.3 103 0.083 0.091
ideal

FO 29.54% 1.3 10 0.089 0.093
PID 5.98% 9.9 10 0.402 0.405backlash
FO 0.86% 9.9 10 0.079 0.043
PID 3.28% 9.9 10 0.602 0.602

flexible
FO 1.82% 9.9 10 0.450 0.450

9. POSITION/FORCE CONTROL OF TWO ARMS
WORKING IN COOPERATION

Two robots carrying a common object are a logical
alternative for the case in which a single robot is not able to
handle the load. The choice of a robotic mechanism depends
on the task or the type of work to be performed and,
consequently, is determined by the position of the robots
and by their dimensions and structure.

In general, the selection is done through experience and
intuition; nevertheless, it is important to measure the
manipulation capability of the robotic system [52] that can
be useful in the robot operation. In this perspective it was
proposed the concept of kinematic manipulability [53] and
its generalization by including the dynamics [54] or, alters
natively, the statistical evaluation of manipulation [55].
Other related aspects such as the coordination of two robots
handling objects, collision avoidance and free path planning
have been also investigated [56]. With two cooperative
robots the resulting interaction forces have to be
accommodated and consequently, in addition to position
feedback, force control is also required to accomplish
adequate performances [57].

We consider two 2R cooperating manipulators with
identical dimensions (Fig. 46). The contact of the robot
gripper with the load is modeled through a linear system
with a mass M, a damping B and a stiffness K (Fig. 47).

Fig. 46. The 2R dual arm robot and the constraint surface
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M 0

Fig. 47. The contact between the robot gripper and the object

The controller architecture (Fig. 48) is inspired on the
impedance and compliance schemes. Therefore, we
establish a cascade of force and position algorithms as
internal an external feedback loops, respectively, where xd

and Fd are the payload desired position coordinates and
contact forces.

9.1. Controller Performances

This section analyzes the system performance both for
robots ideal transmissions and robots with dynamic
phenomena at the joints, such as backlash and flexibility.
Moreover, we compare the response of FO and classical
algorithms namely PD: CP(s) = Kp (1 + Td s) and PI:
CF(s) = KF [1 + (Ti s)], in the position and force loops,
respectively. Both algorithms were tuned by trial and error
having in mind getting a similar performance in the two
cases. The resulting parameters were FO: {KP,P} {104,
1/2}, {KF,F} {2,1/5} and PD/PI: {Kp,Kd} {104,102},
{Kp,Ki} {10,104} for the position and force loops,
respectively. Moreover, it is adopted the operating point, the
center of the object A {x,y} {0,1} and a object surface
with parameters{,M,Bj,Kj} {010,1.0,103}.

In order to study the system dynamics we apply,
separately, small amplitude rectangular pulses, at the
position and force references. Therefore, we perturb the
references with xd = 103, yd = 103, Fxd = 1.0, Fyd = 1.
and we analyze the system performance in the time domain.

To evaluate the performance of the proposed algorithms
we compare the response for robots with dynamical
phenomena at the joints. In all experiments the controller
sampling frequency is fc = 10 kHz for the operating point A
of the object and a contact force of each gripper of
{Fxj,Fyj} {0.5,5} Nm for the jth (j = 1, 2) robot.

Figure 49 depicts the time response of the robot A, under
the action of the FO and the PD/PI algorithms, for robots
with ideal transmissions at the joints.

Fig. 48. The position/force cascade controller.
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Fig. 49. The time response of robots with ideal joints under the action
of the FO and the PD−PI algorithms for a pulse perturbation at the

robot A position reference yd = 10−3 m and a payload M = 1 kg, Bi = 1
Ns/m and Ki = 103 N/m.
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Fig. 50. Time response of robots with joints having backlash under the
action of the FO and the PD−PI algorithms, for a pulse perturbation at

the robot A position reference yd = 10−3 m and a payload M = 1 kg,
Bi = 1 Ns/m and Ki = 103 N/m

In Figs. 50 and 51 we analyze the response of robots
with dynamic backlash and dynamic flexibility at the joints.

The time responses (Tables 3-6), namely the percent
overshoot PO%, the steady-state error ess, the peak time Tp

and the settling time Ts, reveal that, although tuned for
similar performances in the first case, the FO is superior to
the PD/PI in the cases with dynamical phenomena at the
robot joints.

Table 3. Time response characteristics for a perturbation x d the robot
A position reference.

Joint PO% ess Tp Ts

PID 33.89 9.8 10-4 17 10-3 70 10-2

Ideal
FO 25.39 8.3 10-4 9 10-3 50 10-2

PID 4.5 5.3 10-3 17 10-3 31 10-3

Backlash FO 1.05 2.2 10-4 13 10-3 30 10-3

PID 4.87 10 10-2 35 10-3 71 10-3

Flexible FO 2.51 2.2 10-3 33 10-3 60 10-2
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Fig. 51. Time response of robots with joints having backlash under the
action of the FO and the PD−PI algorithms, for a pulse perturbation at

the robot A position referenceyd = 10−3 m and a payload M = 1 kg,
Bi = 1 Ns/m and Ki = 103 N/m

Table 4. Time response characteristics for a perturbation yd the robot
A position reference.

Joint PO% ess Tp Ts

PID 40.6 9.7 10-4 23 10-2 70 10-2

Ideal
FO 25.87 4.7 10-4 9 10-1 45 10-2

PID 9.5 9.6 10-3 66 10-2 91 10-2

Backlash
FO 9.7 9.7 10-3 80 10-3 90 10-3

PID 9.6 9.7 10-3 98 10-2 98 10-2

Flexible FO 8.8 2.2 10-3 93 10-3 93 10-2

Table 5. Time response characteristics for a perturbation Fxd at the
robot A force reference.

Joint PO% ess Tp Ts

PID 78.54 102 10-2 11 10-3 23 10-3

Ideal
FO 90.32 94 10-2 99 10-3 199 10-3

PID 89.85 93 10-2 10 10-2 20 10-2

backlash
FO 92.32 93 10-2 27 10-2 55 10-2

PID 89.51 94 10-2 5.6 10-2 11 10-2

Flexible
FO 91.76 93 10-2 23 10-2 47 10-2
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Table 6. Time response characteristics for a perturbation Fyd at the
robot A force reference.

joint PO% ess Tp Ts

PID 78.96 10 10-1 14 10-3 29 10-3

ideal
FO 90.69 9.4 10-2 99 10-3 199 10-3

PID 90.63 93 10-2 23 10-2 46 10-2

backlash
FO 92.01 93 10-2 72 10-2 145 10-2

flexible PID 90.67 93 10-2 14 10-2 29 10-2

10. HEAT DIFFUSION

The heat diffusion is governed by a linear one-
dimensional partial differential equation (PDE) of the form:

2

2

x
uk

t
u





 (34)

where k is the diffusivity, t is the time, u is the temperature
and x is the space coordinate. The system (34) involves the
solution of a PDE of parabolic type for which the standard
theory guarantees the existence of a unique solution [59].

For the case of a planar perfectly isolated surface we
usually apply a constant temperature U0 at x = 0 and
analyzes the heat diffusion along the horizontal coordinate x.
Under these conditions, the heat diffusion phenomenon is
described by a non-integer order model:

  sG
s

U
s,xU 0  k

sx
esG


 (35)

where x is the space coordinate, U0 is the boundary condition
and G(s) is the system transfer function.

In our study, the simulation of the heat diffusion is
performed by adopting the Crank-Nicholson implicit
numerical integration based on the discrete approximation to
differentiation as [58-60]:

     1, 1 2 1, 1, 1ru j i r u j i ru j i         

     , 1 2 , , 1ru j i r u j i u j i     
(36)

where r = kt(x2)1, {x, t} and {i, j} are the increments
and the integration indices for space and time, respectively.

10.1. Control Strategies

The generalized PID controller Gc(s) has a transfer
function of the form:

 1
1c d

i

G s K T s
T s




 
   

  
(37)

where and are the orders of the fractional integrator and
differentiator, respectively. The constants K, Ti and Td are
correspondingly the proportional gain, the integral time
constant and the derivative time constant.

Clearly, taking (, ) = {(1, 1), (1, 0), (0, 1), (0, 0)} we
get the classical {PID, PI, PD, P} controllers, respectively.

Heat System
+

-

C (s)R(s)

G(s)





1Gc(s)
M(s) N (s)E (s)

Fig. 52. Closed-loop system with PID controller Gc(s)

The PID controller is more flexible and gives the
possibility of adjusting more carefully the closed-loop
system characteristics.

In the next two sub-sections, we analyze the system of
Fig. 52 by adopting the classical integer-order PID and a
fractional PID, respectively.

10.2. PID Tuning Using the Ziegler-Nichols Rule

In this sub-section we analyze the closed-loop system
with a conventional PID controller given by the transfer
function (37) with = = 1. Usually, the PID parameters
(K, Ti, Td) are tuned by using the so-called Ziegler-Nichols
open loop (ZNOL) method [60]. The ZNOL heuristics are
based on the approximate first-order plus dead-time model:

ˆ
1

p sTK
G s e

s



(38)

For the heat system, the resulting parameters are
{Kp , , T} = {0.52, 162, 28} leading to the PID constants
{K, Ti, Td} = {18.07, 34.0, 8.5}.

A step input is applied at x = 0.0 m and the closed-loop
response c(t) is analyzed for x = 3.0 m, without actuator
saturation (Fig. 53). We verify that the system with a PID
controller, tuned through the ZNOL heuristics, does not
produce satisfactory results giving a significant overshoot ov
and a large settling time ts namely {ts, tp, tr, ov} {27.5,
44.8, 12.0, 68.56}, where tp represents the peak time and tr

the rise time. We analyze two indices that measure the
response error, namely the integral square error (ISE) and
the integral time square error (ITSE) criteria defined as:

 2

0

ISE r t c t dt


    (39)

 2

0

ITSE t r t c t dt


    (40)

We can use other performance criteria such as the
integral absolute error (IAE) or the integral time absolute
error (ITAE); however, in the present case the ISE and the
ITSE criteria have produced the best results and are adopted
in the study.

In this case, the PID reveals the following values for
parameters (ISE, ITSE) = (27.53, 613.97).

The poor results indicate again that the method of tuning
may not be the most adequate for the control of the heat
system.
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Fig. 53. Step responses of the closed-loop system for the PID controller
and x = 3.0 m

In fact, the inherent fractional dynamics of the system
lead us to consider other configurations. In this perspective,
we propose the use of fractional controllers tuned by the
minimization of the indices ISE and ITSE.

10.3 PIDTuning Using Optimization Indices

In this sub-section we analyze the closed-loop system
under the action of the PIDcontroller given by the transfer
function (37) with = 1 and 0 β1. The fractional
derivative term Tds in (37) is implemented through a 4th-
order Padé discrete rational transfer function. It is used a
sampling period of T = 0.1 s.

The PIDcontroller is tuned by the minimization of an
integral performance index. For that purpose, we adopt the
ISE and ITSE criteria.

A step reference input R(s) = 1/s is applied at x = 0.0 m
and the output c(t) is analyzed for x = 3.0 m, without
actuator saturation. The heat system is simulated for 3000
seconds. Fig. 54 illustrates the variation of the fractional
PID parameters (K, Ti, Td) as function of the order’s
derivative , for the ISE and the ITSE criteria. The dots
represent the values corresponding to the classical PID
addressed in the previous section.

The curves reveal that for < 0.4 the parameters
(K, Ti, Td) are slightly different, for the two ISE and ITSE
criteria, while for ≥0.4 they lead to almost similar values.
This fact indicates a large influence of a weak order
derivative on system’s dynamics.

To further illustrate the performance of the fractional-
order controllers a saturation nonlinearity is included in the
closed-loop system of Fig. 52 and inserted in series with the
output of the controller Gc(s). The saturation element is
defined as:

 
,

sign ,
m m

n m
m m

  
(41)

The controller performance is evaluated for
= {20,…, 100} and = ∞which corresponds to a system
without saturation. We use the same fractional-PID
parameters obtained without considering the saturation
nonlinearity.

Figures 55 and 56 show the step responses of the closed-
loop system and the corresponding controller output, for the
PIDtuned in the ISE and ITSE perspectives for = 10 and

∞, respectively. The controller parameters {K, Ti, Td, }
correspond to the minimization of those indices leading to
the values ISE: {K, Ti, Td, } {3, 23, 90.6, 0.875} and
ITSE: {K, Ti, Td, } {1.8, 17.6, 103.6, 0.85}.

The step responses reveal a large diminishing of the
overshoot and the rise time when compared with the integer
PID, showing a good transient response and a zero steady-
state error. The PIDleads to better results than the classical
PID controller tuned through the ZNOL rule. These results
demonstrate the effectiveness of the fractional algorithms
when used for the control of fractional-order systems. The
step response and the controller output are also improved
when the saturation level is diminished.
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and x = 3.0 m.
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Figure 57 depicts the ISE and ITSE indices for 0 1,
when = {20, ..., 100} and = ∞. We verify the existence
of a minimum for = 0.875 and = 0.85 for the ISE and
ITSE cases, respectively. Furthermore, the higher the the
lower the value of the index.

Figures 58 and 59 show the variation of the settling time
ts, the peak time tp, the rise time tr, and the percent overshoot
ov(%), for the closed-loop response tuned through the
minimization of the ISE and the ITSE indices, respectively.

In the ISE case ts, tp e tr diminish rapidly for
0 0.875, while for > 0.875 the parameters increase
smoothly. For the ITSE we verify the same behavior for
= 0.85. On the other hand, ov(%) increases smoothly for
0 0.7, while for > 0.7 it decreases very quickly, both
for the ISE and the ITSE indices.

In conclusion, for 0.85 β0.875 we get the best
controller tuning, superior to the performance revealed by
the classical integer-order scheme.
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Fig. 57. ISE and ITSE versus 0 1 for = {20, ..., 100} and =∞.
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Fig. 59. Parameters ts, tp, tr, ov(%) for the step responses of the closed-
loop system for the ITSE indice, with a PIDcontroller, when= {20,

..., 100} and = ∞, x = 3.0 m.

11. ELECTRICAL IMPEDANCE OF FRUITS

In an electrical circuit the voltage u(t) and the current i(t)
can be expressed as a function of time t:

u(t) = U0 cos(t) (42)

i(t) = I0 cos(t+) (43)
where U0 and I0 are the amplitudes of the signals, is the
frequency and is the current phase shift. The voltage and
current can be expressed in complex form as:

 )(
0Re)( tjeUtu  (44)

 )(
0Re)(  tjeIti (45)

Consequently, the electrical impedance Z (j) is:



 jeZ

jI
jUjZ 0)(

)()( (46)

A brief reference about the constant phase elements
(CPE) and Warburg impedance is presented here due to their
application in the work. In fact, to model an electrochemical
phenomenon it is often used a CPE because the surface is
not homogeneous [61-62]. So, with a CPE:

 Cj
jZ 


1

)( (47)

C is the capacitance, with units [m2/kg1/s(+3)/A2/], and
is a parameter that can change between 0 and 1, being an
ideal capacitor for= 1.

On the other hand, in electrochemical systems with
diffusion, the impedance is modeled by the so-called
Warburg element [62-64]. The Warburg element arises from
one-dimensional diffusion of an ionic species to the
electrode. If the impedance is under an infinite diffusion
layer, the Warburg impedance is:
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  Cj

RjZ
5.0

)(


 (48)

where R is the diffusion resistance. If the diffusion process
has finite length, the Warburg element becomes:

 
5.0

5.0tanh)(


 jRjZ (49)

with D/2 , where R is the diffusion resistance, is the
diffusion time constant, is the diffusion layer thickness
and D is the diffusion coefficient.

11.1. Study of Fractional Order Electrical Impedances

The structure of fruits and vegetables have cells that are
sensitive to heat, pressure and other stimuli. These systems
constitute electrical circuits exhibiting a complex behaviour.
Bearing these facts in mind, in our work we study the
electrical impedance for several botanical elements, under
the point of view of fractional order systems.

We apply sinusoidal excitation signals v(t), to the
botanical system, for several distinct frequencies (Fig. 60)
and the impedance Z(j) is measured based on the resulting
voltage u(t) and current i(t). Moreover, we measure the
environmental temperature, the weight, the length and width
of all botanical elements. This criterion helps us to
understand how these factors influence Z(j).

In this study we develop several different experiments
for evaluating the variation of the impedance Z(j) with the
amplitude of the input signal V0, for different electrode
lengths of penetration inside the element , the
environmental temperature T, the weights W and the
dimension D.

The value of R is changed for each experiment, in order
to adapt the values of the voltage and current to the scale of
the measurement device.

We start by analyzing the impedance for an amplitude of
input signal of V0 = 10 volt, a constant adaptation resistance
Ra = 15 k, applied to one Solanum Tuberosum (potato),
with an weight W = 1.24 101 kg, environmental temperature
T = 26.5 degree Celsius, dimension
D = 7.97 1025.99 102 m, and the electrode length
penetration = 2.1 102 m.

Figure 61 presents the Bode diagrams for Z(j). The
results reveal that the system has a fractional order
impedance. In fact, approximating the experimental results
in the amplitude Bode diagram through a power function
namely by |Z(j)| = ab , we obtain
(a, b) = (4.91 103, 0.0598), at the low frequencies, and
(a, b) = (7.94 105, 0.5565), at the high frequencies.

It is interesting to compare the polar diagram and the
admittance loci for RLC, series or parallel, circuits. We
verify that our systems have similarities with the RC parallel
circuit and, therefore, we conclude that this vegetable has
proprieties similar to a kind of capacitor. In order to analyze
the system linearity we evaluate Z(j) for different
amplitudes of input systems, namely,  20,15,50 V volt,
maintaining constant the adaptation resistance Ra = 15 k.
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Fig. 60. Electrical circuit for the measurement of the botanical
impedance Z(j)
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Fig. 61. Bode diagrams of the impedance Z(j) for the potato

The impedance Z(j) has a fractional order and this
characteristic does not change significantly with the
variation of input signal amplitude (Table 7). Therefore, we
can conclude that this system has a linear characteristic.

In a second experiment, we vary the length of the
electrode penetration inside the potato, and we evaluate its
influence upon the value of the impedance. Therefore, we
adjust the electrode to = 1.42 102 m, with V0 = 10 volt
and adaptation resistance R a = 5 k, leading to |Z(j)|
approximations (a, b) = (5.48 103 , 0.0450), at the low
frequencies, and (a, b) = (1.00 106, 0.5651), at the high
frequencies. With these results, we conclude that the length
of wire inside the potato does not change significantly the
values of the fractional orders. Also the linearity was again
confirmed.

The last experiment with the potato is related with the
variation of environmental temperature. In this case, we use
the first potato and the same conditions of first experience,
but with an temperature T = 25.7 degree Celsius. The
amplitude impedance |Z(j)| has the values:
(a, b) = (8.91 103, 0.0555), at the low frequencies, and
(a, b) = (7.10 105, 0.5010), at the high frequencies. Once
more we verify the small variation of the fractional order.
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Table 7. Comparison of the values of |Z(j)|ab for different
amplitudes of the input signal.

low  high Amplitude
(volt) a b a b

5 4.79 103 0.062 6.52 105 0.542
10 4.91 103 0.060 7.94 105 0.557
15 4.54 103 0.054 5.66 105 0.530
20 4.65 103 0.055 5.86 105 0.530

Another issue that may influence the results is the
weight. Therefore, we apply an input signal with amplitude
V0 = 10 volt, adaptation resistance Ra = 15 k, with
environmental temperature T = 26.5 degree Celsius, and
electrode penetration = 2.1 102 m to another potato with
dimension D = 7.16 102 3.99 102 m, weight
W = 5.89 102 kg. The asymptotic results for |Z(j)| are
(a, b) = (7.17 103, 0.0546), at the low frequencies and
(a, b) = (2.00 106, 0.5990), at the high frequencies. Again,
this experience does not reveal significant variations in the
fractional order while the linearity is also confirmed.

In conclusion, the impedance does not change
significantly with the factors analyzed. In this line of
thought, we organize similar experiments with other
vegetables and fruits.

The results correspond to experiments adopting an
amplitude of input signal V0 = 10 volt and an electrode
penetration = 2.1 102 m. Similar experiments are
developed for several fruits. Table 8 presents the
characteristics of the vegetables and fruits respectively.

Table 8. Characteristics of the vegetables and fruits

Vegetable or
Fruit / Specie

Weight
(kg)

Length
(m)

Width
(m)

Carrot / Daucus
Carota L. 8.85 102 1.55 101 3.39 102

Garlic / Allium
sativum L . 2.99 103 1.38 102 6.00 103

Onion / Allium
cepa L. 8.33 102 5.86 102 5.77 102

Potato / Solanum
tuberosum 1.24 101 7.97 102 5.99 102

Pimento / Capsi-
cum annuum 1.30 101 1.23 101 8.20 102

Tomato/Lycoper-
sicom esculentum 1.46 101 5.57 102 6.88 102

Turnip / Brassica
napobrassica 7.90 102 7.26 102 5.43 102

Apple / Malus
domestica 1.39 101 6.36 102 7.15 102

Banana / Musa
ingens 1.11 101 1.49 101 3.42 102

Kiwi / Actinidia
deliciosa 8.95 102 6.52 102 5.50 102

Lemon / Citrus ×
limon 1.66 101 9.19 102 6.58 102

Orange / Citrus
sinensis 1.53 101 6.69 102 6.98 102

Pear / Pyrus
communis 9.72 102 6.51 102 5.63 102

Figure 62 depicts Re {Z(j)} and Im {Z(j)} for some
of the vegetables and fruits under study, and the
corresponding approximation values. In these experiences,
the adaptation resistance Ra is changed for each case.

The results reveal that Z(j) has distinct characteristics
according with the frequency range. For low frequencies,
the impedance is approximately constant, but for high
frequencies, it is clearly of fractional order.
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Fig. 62. Diagrams of real Re [Z(j)] and imaginary Im [Z(j)] parts of
the electrical impedance for several vegetables and fruits: garlic (with

Ra = 15.0 k), onion (with Ra = 2.7 k), turnip (with Ra = 2.2 k),
banana (with Ra = 5.5 k) and lemon (with Ra = 750 )
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11.2. The Impedance Model

In the previous section we verified that it is difficult to
find a model for Z(j) within the whole frequencies range.
In this section, we apply the circuit of Fig. 63, often adopted
in the area of electrochemistry, where R0 and R1 are
resistances and CPE is given in (47).

The numerical values of R0, R1, C and for the different
impedances are shown in Table 9.

The results reveal a very good fit for several vegetables
and fruits. Fig. 64 presents the polar diagrams for the garlic,
potato, tomato, kiwi and pear. It is clear that adopting
circuits with more components, and other configuration, we
can have better approximations. Therefore, in future
development we will study new circuits for modeling the
impedance of other materials.

Recent research focus on the implementation of
fractional order capacitances, often called fractances.
Patents and commercial products are presently available,
opening promising areas of application in electronics and
control [62].

R0

CPE

R1

Fig. 63. The Randles circuit
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Fig 64. Polar diagrams of the impedance Z(j) for several vegetables
and fruits: garlic, potato tomato, kiwi and pear

Table 9. Values of the elements of the Randles circuit for the garlic,
potato, tomato, kiwi and pear.

Vegetable
/ fruits

R0

[]
R1

[]
C 

Garlic 1 9.7 103 1.81 107 0.609
Potato 57 3.15 103 2.40 107 0.677
Tomato 35.04 240.30 5.00 106 0.565

Kiwi 28.04 242.00 7.67 106 0.531
Pear 44.04 409.00 1.14 106 0.619

This article follows an alternative strategy, studying
natural living systems instead of technological artificial
elements. Consequently, it points out interesting new
directions towards the design of devices capable of
measuring how mature is the fruit and vegetable, or to give
an estimative of its life span for storage purposes.

12. IMPLEMENTATION OF THE FRACTIONAL
POTENTIAL

The classical expressions for the electrical potential of
a single charge, a dipole, a quadrupole, an infinite filament
carrying a charge per unit length, two opposite charged
filaments, and a planar surface with charge density reveal
the relationship rr,,r,r,r~ 123 ln (where r is the
distance to the measuring point) corresponding to an
integer-order differential relationship. Such state of affairs,
motivated several authors to propose its generalization to
fractional multipoles that produce a potential

  ,r~ . Nevertheless, besides the abstract
manipulation of mathematical expressions, the truth is that
there is no practical method, and physical interpretation, for
establishing the fractional potential [65].

We start by re-evaluating the potential produced at point
(x,y) by a straight filament with finite length l and charge q:
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It is well-known that for x we have
  Cxq  1

04 and, with y = 0, for 0x we have
   Cxlq  1ln2 0 . These limit cases correspond to

a single charge and to an infinite filament.

We verify that expression (50) changes smoothly
between the two limit cases. Therefore, we can have an
intermediate fractional-order relationship as long as we
restrict to a limited working range. This means that standard
integer-order potential relationships have a global nature
while fractional-order potentials have a local nature possible
to capture only in a restricted region. This conclusion leads
to an approximation scheme based on a recursive placement
of integer-order functions.

In this line of thought, we developed a one-dimensional
GA that places recursively n charges qi (i = 0, …, (n1)/2,
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nodd; i = 1, …, n/2, neven) at the symmetrical positions
x i, with exception of 00 x that corresponds to the centre
of the n-array of charges where there is a single charge q0.

Our goal is to compare the desired reference potential
 kxref , with the approximate potential app , resulting

from a number n of charges qi located at xi, given by:
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The experiments consist on executing the GA, for
generating a combination of positions and charges that lead
to an electrical potential with fractional slope similar to the
desire reference potential. The values of GA parameters are:
population number P = 40, crossover C(%) = 85.0%,
mutation M(%) = 1.0%, elitist strategy ES(%) = 10.0% and
a maximum number of generations G = 100. The
optimization fitness function corresponds to the
minimization of the error:

..    1,...,1,0,min,ln
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niJJ
i

m

k
refapp  (52)

where m is the number of sampling points along the x-axis.

In the present case, we consider a log-log perspective,
but its modification for a lin-lin case is straightforward.

For example, Fig. 65 shows app for an approximation
with n = 5 charges, when 5.10.1  xref and 8.02.0 x .

After 32 iterations the GA leads to q0A = 0.489 [volt],
q1A = 0.920 [volt] and q2A = .077 [volt] (with scale factor
× (), at x0A = 0.0 [m], x1A = 0.147 [m] and
x2A = 0.185 [m], respectively.

The results show a good fit between the two functions.
Executing the GA several times we verify that it is possible
to find more than one ‘good’ solution. For a given
application, a superior precision may be required and, in that
case, a larger number of charges must be used. In this line of
thought, we study the precision of this method for different
number of charges, namely from n = 1 up to n = 10 charges.

Figure 65 depicts the minimum, maximum and average
of J versus n, to achieve a valid solution for a statistical
sample of 10 GA executions. This chart confirms that we
have a better precision the larger the number of charges.
Also, the results reveal the requirement of a larger number
of iterations when the number of charges increases, and
consequently a larger calculation time.
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We verify also that the position of the charges varies
significantly with the number of charges used in the
approximation. Therefore, pattern of the charge versus the
location is not clear and its comparison with a fractal
recursive layout is still under investigation.

13. STOCK PRICING DYNAMICS

In this section are studied daily records of international
stock prices [66, 67] using the Fourier transform and the
Pseudo Phase Plane (PPP). It is analysed the
unpredictability based on the power law of the decay of the
Fourier transform. Several examples show the evidence that
the S&P 500 Stock market is a persistent process, with long-
run memory effects.

13.1. Spectral Analysis of Market Indices

Several signals xi(t), i , ranging from 7910 trading-
days in the same time period, were selected from the pool of
the 500 biggest companies in US.

The Fourier transform is a mathematical tool [68] well
adapted for analyzing the dynamics of the financial indices.
The Fourier spectra F{xi(t)} reveal a power decay that can
be approximated by:

|F{x i(t)}| c m, i , c,m (53)
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Figures 66 and 67 show the time series for three cases,
and the corresponding Fourier transform with the
approximation formula (1) that characterizes the decay
slope, respectively. Table 10 depicts the ticker of the
financial index and the corresponding spectral slopes m.

In Fig. 67 are also displayed the values of R2, the square
of the correlation factor between ln() and ln|F{x}|, that
reflects the degree of statistical association of the pair of
variables.

Figure 68 shows the relation between m and R2,
revealing that this association is almost functional.

Table 10. Characteristics of five financial indices

Ticker m dimPPP d
F0 0.7790 1.463 1062

HPQ0 0.8849 1.435 697
SUN0 1.003 1.642 545
CTL0 1.108 1.379 919
ECL0 1.223 1.415 1043
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Fig. 66. Plots of the time series of the financial indices ECL0, SUN0
and F0
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13.2. Pseudo Phase Plane Analysis

The PPP is a tool that makes easier the study of the time
series dynamics by its representation in a 2D space [69, 70].
Once a delay d is selected the PPP is a plot of the points:

  NddNtRxxP dttd   0,,,1,0:, 2  (54)
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A process, based on information theory, to determine the
delay d that provides the best candidate for periodicity was
proposed by [70, 71]. Several experiments revealed that an
alternative, but simpler, way for selecting the delay is based
in detecting the first contrasting minimum in the
autocorrelation function (ACF) witch can be defined by the
expression:

     


 
n

dt
t

n

dt
dtt xxxxxxdACF 2 (55)

As a drawback, this equivalent process must be done
with the user supervision because, sometimes, due to the
noise embedded in some financial signals the first minimum
proposed by the computer program is not sufficient clear,
and therefore must be seen as a false minimum.

In Fig. 69 are plotted the ACFs of three signals showing
the first contrasting minima. The resulting PPPs are also
represented and their fractal dimension dimPPP is calculated.

The results reveal that the delay d, required for the PPP
representation, and the fractal dimension dimPPP [72] have a
minimum and a maximum, respectively, when m = 1. A
preliminary analysis indicates that this behavior is related
with the unpredictable of the time series and to the nature of
phenomena similar to biased random walks. A deeper
understanding of the fractional or integer value of d, the
fractal characteristics of the PPP and the signal
predictability needs to be further explored.

Table 10 suggests a relationship between m, dimPPP and
d. These characteristics are clearly depicted in Fig. 71.
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Fig. 69. Plots of the ACF for the financial indices ECL0, SUN0 and F0
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14. DYNAMICS IN A PARTICLE SWARM
OPTIMIZATION ALGORITHM

This section studies the fractional dynamics during the
evolution of a Particle Swarm Optimization (PSO)
algorithm. Some swarm initial particles are randomly
changed for stimulating the system response, and its effect is
compared with a reference situation. The perturbation effect
in the PSO evolution is observed in the perspective of the
time behavior of the fitness of the best particle. The
dynamics is investigated through the median of a sample of
experiments, while adopting the Fourier analysis for
describing the phenomena. The influence of the PSO
parameters upon the global dynamics is also observed by
performing several experiments for distinct values and
parameters.

14.1. PSO Algorithm

The particle swarm optimization algorithm was proposed
originally by Kennedy and Eberhart [73]. This optimization
technique is inspired in the way swarms (e.g., flocks of
birds, schools of fishes, herds) elements move in a
synchronized way as a defensive tactic. An analogy is
established between a particle and an element of swarm. The
particle movement is characterized by two vectors
representing its current position x and velocity v (Fig. 72).

14.2. The optimization System

This section presents the problem used in the study of
the optimization PSO dynamic system. The objective
function consists on minimizing the Easom function (56)
[74]. This function has two parameter and the optimum
function is located at f(x1,x2)|opt=-1.0. The variables consist
in x1, x2  [100,100] and the algorithm uses real code to
represent the swarm.

2
2

2
1 )()(

2121 e)cos()cos(),(   xxxxxxf (56)

A 50-population PSO is executed during 5000
generations under 1 = 2 =1.5.

The influence of several factors can be analyzed in order
to study the dynamics of the PSO [76], particularly the
inertia factor I or the i constants, i = {1, 2}. This effect can
vary according to the type of population size, fitness
function, and generation number used in the PSO. In this
work, it is changed randomly one particle of the initial
population. The influence of the inertia parameter is studied
by performing tests for the values I = {0.4, 0.5, …, 0.8}.
The fitness evolution of the best global particle is taken as
the output signal.

Initialize Swarm
repeat

forall particles do
Calculate fitness f

end
forall particles do

vt+1 = I vt + (b-x) + 2(g-x)
xt+1 = xt + vt+1

end
until stopping criteria

Fig. 72. Particle Swarm Optimization

14.3. The PSO Dynamics

The PSO system is stimulated by perturbing the initial
population, namely by replacing one particle by a one new
generated randomly. The corresponding swarm population
fitness modification f is evaluated. The test condition
remains unchanged during all the experiments. Therefore,
the variation of the resulting PSO swarm fitness perturbation
during the evolution can be viewed as the output signal that
varies during the successive iterations. This analysis is
evaluated using several experiments with different
perturbation that replace the same particle in the population.
All the other particles remain unchanged.

In this perspective, a perturbation input signal is created
in the initial population when the replacement is performed.
The output signal consists in the difference between the
population fitness with and without the initial perturbation,
that isf(T) = fpert(T) f(T).

Once having de Fourier description of the output signals
it is possible to calculate the corresponding normalized
transfer function (2) for particle replacement nr.
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


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
 (57)

After repeating for all seeds a `representative' transfer
function is obtained by using the median of the statistical
sample [75] of n experiments for inertial term of I. In fig. 2
are depicted the transfer functions for I = 0.4 up to I = 0.8.

After repeating for all seeds a `representative' transfer
function is obtained by using the median of the statistical
sample [75] of n experiments (see Fig. 73). The medians of
the transfer functions calculated previously (i.e. , for each
real and imaginary part and for each frequency) are taken as
the final part of the numerical transfer function H(jw).

Therefore, the median of the numerical system transfer
functions, Fig. 73, is approximated by analytical expressions
with gain k = 1, one pole a + of fractional order +,
and a time delay T, given by (58) (see Fig.74).
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Fig. 73. Median transfer function H(jw), nr = {4,5,…8}
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Fig. 74. Polar diagram for {H(jw), G(jw)}, I = 0.6

For evaluating the influence of the inertia parameter I are
performed several simulations ranging from I = 0.4 up to
I = 0.8. The parameters of {a, , T} are depicted in Fig. 75.

The results reveal that the transfer function parameters
{a, , T} have some dependence with the inertia coefficient
I. It can be observed that the parameters of transfer function
have a maximum values at I = 0.6.

By enabling the zero/pole order to vary freely, we get
non-integer values for , while the adoption of an integer-
order transfer function would lead to a larger number of
zero/poles to get the same quality in the analytical fitting to
the numerical values. The `requirement' of fractional-order
models in opposition with the classical case of integer
models is a well-known discussion and even nowadays final
conclusions are not clear since it is always possible to
approximate a fractional frequency response through an
integer one as long as we make use of a larger number of
zeros and poles. Nevertheless, in the present experiments
there is a complementary point of view towards FC.

This section analyzed the signal propagation and the
dynamic phenomena involved in the time evolution of a
swarm. The study was established on the basis of the Easom
function optimization. While PSO schemes have been
extensively studied, the influence of perturbation signals
over the operating conditions is not well known.

Fig. 75. Parameters (a ,, T) of G(jw)

Bearing these ideas in mind, the fractional calculus
perspective calculus was introduced in order to develop
simple, but comprehensive, approximating transfer functions
of non-integer order.

15. CIRCUIT SYNTHESIS USING EVOLUTIONARY
ALGORITHMS

In recent decades evolutionary computation (EC)
techniques have been applied to the design of electronic
circuits and systems, leading to a novel area of research
called Evolutionary Electronics (EE) or Evolvable Hardware
(EH). EE considers the concept for automatic design of
electronic systems. Instead of using human conceived
models, abstractions and techniques, EE employs search
algorithms to develop implementations not achievable with
the traditional design schemes, such as the Karnaugh or the
Quine-McCluskey Boolean methods.

Several papers proposed designing combinational logic
circuits using evolutionary algorithms and, in particular,
genetic algorithms (GAs) [77, 78] and hybrid schemes such
as the memetic algorithms (MAs) [79].

Particle swarm optimization (PSO) constitutes an
alternative evolutionary computation technique, and this
paper studies its application to combinational logic circuit
synthesis. Bearing these ideas in mind, the organization of
this section is as follows. Sub-section 15.1 presents a brief
overview of the PSO. Sub-section 15.2 describes the PSO
based circuit design, while sub-section 15.3 exhibits the
simulation results.

15.1. Particle Swarm Optimization

In the literature about PSO the term ‘swarm intelligence’
appears rather often and, therefore, we begin by explaining
why this is so.

Non-computer scientists (ornithologists, biologists and
psychologists) did early research, which led into the theory
of particle swarms. In these areas, the term ‘swarm
intelligence’ is well known and characterizes the case when
a large number of individuals are able of accomplish
complex tasks. Motivated by these facts, some basic
simulations of swarms were abstracted into the
mathematical field. The usage of swarms for solving simple
tasks in nature became an intriguing idea in algorithmic and
function optimization.

Eberhart and Kennedy were the first to introduce the
PSO algorithm [80], which is an optimization method
inspired in the collective intelligence of swarms of
biological populations, and was discovered through
simplified social model simulation of bird flocking, fishing
schooling and swarm theory.

In the PSO, instead of using genetic operators, as in the
case of GAs, each particle (individual) adjusts its flying
according with its own and its companions experiences.
Each particle is treated as a point in a D-dimensional space
and is manipulated as described below in the original PSO
algorithm:
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)()()()( 21 idgdidididid xpRandcxprandcvv  (59a)

ididid vxx  (59b)

where c1 and c2 are positive constants, rand() and Rand() are
two random functions in the range [0,1], Xi = (xi1, xi2,…, xiD)
represents the ith particle, Pi = (pi1, pi2,…, piD) is the best
previous position (the position giving the best fitness value)
of the particle, the symbol g represents the index of the best
particle among all particles in the population, and Vi = (vi1,
v i2 ,…, viD) is the rate of the position change (velocity) for
particle i.

Expression (59) represents the flying trajectory of a
population of particles. Equation (59a) describes how the
velocity is dynamically updated and equation (59b) the
position update of the “flying” particles. Equation (59a) is
divided in three parts, namely the momentum, the cognitive
and the social parts. In the first part the velocity cannot be
changed abruptly: it is adjusted based on the current
velocity. The second part represents the learning from its
own flying experience. The third part consists on the
learning group flying experience [81].

The first new parameter added into the original PSO
algorithm is the inertia weigh. The dynamic equation of
PSO with inertia weigh is modified to be:

)()(
)()(

2

1

idgd

idididid

xpRandc
xprandcwvv

 (60a)

ididid vxx  (60b)

where w constitutes the inertia weigh that introduces a
balance between the global and the local search abilities. A
large inertia weigh facilitates a global search while a small
inertia weigh facilitates a local search.

Another parameter, called constriction coefficient k, is
introduced with the hope that it can insure a PSO to
converge. A simplified method of incorporating it appears in
equation (61), where k is function of c1 and c2 as it is
presented in equation (62).
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where c1 + c24.

There are two different PSO topologies, namely the
global version and the local version. In the global version of
PSO, each particle flies through the search space with a
velocity that is dynamically adjusted according to the
particle’s personal best performance achieved so far and the
best performance achieved so far by all particles. On the
other hand, in the local version of PSO, each particle’s
velocity is adjusted according to its personal best and the

best performance achieved so far within its neighborhood.
The neighborhood of each particle is generally defined as
topologically nearest particles to the particle at each side.

PSO is an evolutionary algorithm simple in concept,
easy to implement and computationally efficient. Figs. 76-
78 present a generic EC algorithm, a hybrid algorithm, more
precisely a MA and the original procedure for implementing
the PSO algorithm, respectively.

The different versions of the PSO algorithms are: the
real-value PSO, which is the original version of PSO and is
well suited for solving real-value problems; the binary
version of PSO, which is designed to solve binary problems;
and the discrete version of PSO, which is good for solving
the event-based problems. To extend the real-value version
of PSO to binary/discrete space, the most critical part is to
understand the meaning of concepts such as trajectory and
velocity in the binary/discrete space.

Kennedy and Eberhart [80] use velocity as a probability
to determine whether xid (a bit) will be in one state or
another (zero or one). The particle swarm formula of
equation (59a) remains unchanged, except that now pid and
xid are integers in [0.0,1.0] and a logistic transformation
S(v id) is used to accomplish this modification. The resulting
change in position is defined by the following rule:

  0;1)(()  ididid xelsexthenvSrandif (63)

where the function S(v) is a sigmoid limiting transformation
and rand() is a random number selected from a uniform
distribution in the range [0.0,1.0].

1. Initialize the population
2. Calculate the fitness of each individual in the
population
3. Reproduce selected individuals to form a new
population
4. Perform evolutionary operations such as
crossover and mutation on the population
5. Loop to step 2 until some condition is met

Fig. 76. Evolutionary computation algorithm

1. Initialize the population
2. Calculate the fitness of each individual in the
population
3. Reproduce selected individuals to form a new
population
4. Perform evolutionary operations such as
crossover and mutation on the population
5. Apply a local search algorithm
5. Loop to step 2 until some condition is met

Fig. 77. Memetic algorithm

1. Initialize population in hyperspace
2. Evaluate fitness of individual particles
3. Modify velocities based on previous best and
global (or neighborhood) best
4. Terminate on some condition
5. Go to step 2

Fig. 78. Particle swarm optimization process
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15.2. PSO based circuit design

We adopt a PSO algorithm to design combinational logic
circuits. A truth table specifies the circuits and the goal is to
implement a functional circuit with the least possible
complexity. Four sets of logic gates have been defined, as
shown in Table 11, being Gset 2 the simplest one (i.e. , a
RISC-like set) and Gset 6 the most complex gate set (i.e., a
CISC-like set). Logic gate named WIRE means a logical no-
operation.

In the PSO scheme the circuits are encoded as a
rectangular matrix A (row column r c) of logic cells as
represented in Fig. 79.

Three genes represent each cell: <input1><input2><gate
type>, where input1 and input2 are one of the circuit inputs,
if they are in the first column, or one of the previous
outputs, if they are in other columns. The gate type is one of
the elements adopted in the gate set. The chromosome is
formed with as many triplets as the matrix size demands
(e.g., triplets = 3 r c). For example, the chromosome that
represents a 3 3 matrix is depicted in Fig. 80.

The initial population of circuits (particles) has a random
generation. The initial velocity of each particle is initialized
with zero. The following velocities are calculated applying
equation (60a) and the new positions result from using
equation (60b). In this way, each potential solution, called
particle, flies through the problem space. For each gene is
calculated the corresponding velocity. Therefore, the new
positions are as many as the number of genes in the
chromosome. If the new values of the input genes result out
of range, then a re-insertion function is used. If the
calculated gate gene is not allowed a new valid one is
generated at random. These particles then have memory and
each one keeps information of its previous best position
(pbest) and its corresponding fitness. The swarm has the
pbest of all the particles and the particle with the greatest
fitness is called the global best (gbest).

Table 11. Gate sets.

Gate Set Logic gates
Gset 2 {AND,XOR,WIRE}
Gset 3 {AND,OR,XOR,WIRE}
Gset 4 {AND,OR,XOR,NOT,WIRE}
Gset 6 {AND,OR,XOR,NOT,NAND,NOR,WIRE}

X Y

a11

a21

a31

a 12

a 22

a 32

a 13

a 23

a 33

Inputs Outputs

Fig. 79. A 3 3 matrix representing a circuit with input X and output
Y

Fig. 80. Chromosome for the 3 3 matrix of Fig. 79

The basic concept of the PSO technique lies in
accelerating each particle towards its pbest and gbest
locations with a random weighted acceleration. However, in
our case we also use a kind of mutation operator that
introduces a new cell in 10% of the population. This
mutation operator changes the characteristics of a given cell
in the matrix. Therefore, the mutation modifies the gate type
and the two inputs, meaning that a completely new cell can
appear in the chromosome.

To run the PSO we have also to define the number P of
individuals to create the initial population of particles. This
population is always the same size across the generations,
until reaching the solution.

The calculation of the fitness function Fs in (64) has two
parts, f1 and f2 , where f1 measures the functionality and f2
measures the simplicity. In a first phase, we compare the
output Y produced by the PSO-generated circuit with the
required values YR, according with the truth table, on a bit-
per-bit basis. By other words, f1 is incremented by one for
each correct bit of the output until f1 reaches the maximum
value f10, that occurs when we have a functional circuit.
Once the circuit is functional, in a second phase, the
algorithm tries to generate circuits with the least number of
gates. This means that the resulting circuit must have as
much genes <gate type> <wire> as possible. Therefore,
the index f2 , that measures the simplicity (the number of null
operations), is increased by one (zero) for each wire (gate)
of the generated circuit, yielding:

f10 = 2ni no (64a)

f1 = f1 + 1 if {bit i of Y} = {bit i of YR} ,
i = 1, …, f10

(64b)

f2 = f2 + 1 if gate type = wire (64c)
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where ni and no represent the number of inputs and outputs
of the circuit.

The concept of dynamic fitness function Fd results from
an analogy between control systems and the GA case, where
we master the population through the fitness function. The
simplest control system is the proportional algorithm;
nevertheless, there can be other control algorithms, such as,
for example, the proportional and the differential scheme.

In this line of thought, expression (64) is a static fitness
function Fs and corresponds to using a simple proportional
algorithm. Therefore, to implement a proportional-derivative
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evolution the fitness function needs a scheme of the type
[82]:

 ssd FKDFF  (65)

where 0 ≤≤1 is the differential fractional-order and
K is the ‘gain’ of the dynamical term.

15.3. Experiments and results

A reliable execution and analysis of an EC algorithm
usually requires a large number of simulations to provide a
reasonable assurance that the stochastic effects are properly
considered. Therefore, in this study are developed n = 20
simulations for each case under analysis.

The experiments consist on running the three algorithms
GA, MA, PSOto generate a typical combinational logic
circuit, namely a 2-to-1 multiplexer (M2-1), a 1-bit full
adder (FA1), a 4-bit parity checker (PC4) and a 2-bit
multiplier (MUL2), using the fitness scheme described in
(64) and (65). The circuits are generated with the gate sets
presented in Table 11 and P = 3000, w = 0.5, c1 = 1.5 and
c2 = 2.

Figure 81 depict the standard deviation of the number of
generations to achieve the solution S(N) versus the average
number of generations to achieve the solution Av(N) for the
algorithms GA, MA, PSO, the circuits M2-1, FA1, PC4,
MUL2and the gate sets2, 3, 4, 6. In these figure, we can
see that the MUL2 circuit is the most complex one, while the
PC4 and the M2-1 are the simplest circuits. It is also
possible to conclude that Gset 6 is the less efficient gate set
for all algorithms and circuits.

Figure 81 reveals that the plots follow a power law:

   baNAvaNS b ,)()( (66)

Table 12 presents the numerical values of the parameters
(a, b) for the three algorithms.

In terms of S(N) versus Av(N), the MA algorithm
presents the best results for all circuits and gate sets. In what
concerns the other two algorithms, the PSO is superior
(inferior) to the GA for complex (simple) circuits.

Figure 82 depict the average processing time to obtain
the solution Av(PT) versus the average number of
generations to achieve the solution Av(N) for the algorithms
GA, MA, PSO, the circuits M2-1, FA1, PC4, MUL2
and the gate sets 2, 3, 4, 6. When analysing these charts it
is clear that the PSO algorithm demonstrates to be around
ten times faster than the MA and the GA algorithms.

These plots follow also a power law:

   dcNAvcPTAv d ,)()( (67)

Table 12. The Parameters (a, b) and (c, d).

Algorithm a b c d
GA 0.0365 1.602 0.1526 1.1734
MA 0.0728 1.2602 0.2089 1.3587
PSO 0.2677 1.1528 0.0141 1.1233

Table 12 shows parameters (c, d) and we can see that the
PSO algorithm has the best values.

Figures 83 and 84 depict the standard deviation of the
number of generations to achieve the solution S(N) and the
average processing time to obtain the solution Av(PT),
respectively, versus the average number of generations to
achieve the solution Av(N) for the PSO algorithm using Fd,
the circuits M2-1, FA1, PC4, MUL2and the gate sets 2,
3, 4, 6. We conclude that Fd leads to better results in
particular for the MUL2 circuit and for the Av(PT).

Figures 85 and 86 present a comparison between Fs and
Fd.
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Fig. 81. S(N) versus Av(N ) with P = 3000 and F s for the GA, the MA
and the PSO algorithms
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Fig. 82. Av(PT) versus Av(N) with P = 3000 and Fs for the GA, the MA
and the PSO algorithms

In terms of S (N) versus Av(N) it is possible to say that
the MA algorithm presents the best results. Nevertheless,
when analysing Fig. 82, that shows Av(PT) versus Av(N) for
reaching the solutions, we verify that the PSO algorithm is
very efficient, in particular for the more complex circuits.

The PSO based algorithm for the design of
combinational circuits follows the same profile as the other
two evolutionary techniques presented in this paper.
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Fig. 83. S(N) versus Av(N) for the PSO algorithm, P = 3000 and Fd
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Fig. 84. Av(PT) versus Av(N) for the GA, P = 3000 and Fd

Adopting the study of the S(N) versus Av(N) for the three
evolutionary algorithms, the MA algorithm presents better
results over the GA and the PSO algorithms. However, in
what concerns the processing time to achieve the solutions
the PSO outcomes clearly the GA and the MA algorithms.
Moreover, applying the Fd the results obtained are improved
further in all gate sets and in particular for the more complex
circuits.

1

10

100

1000

10000

Gset 6 Gset 4 Gset 3 Gset 2

A
v

(N
)

Fs , M2-1

Fd, M2-1

Fs, FA1

Fd, FA1

Fs, PC4

Fd, PC4

Fs, MUL2

Fd, MUL2

Fig. 85. Av(N) for the PSO algorithm, P = 3000 using F s and Fd
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Fig. 86. S(N) for the PSO algorithm, P = 3000 using F s and Fd

16. CONCLUSIONS

We have presented several applications of the FC
concepts. It was demonstrated the advantages of using the
FC theory in different areas of science and engineering. In
fact, this paper studied a variety of different physical
systems, namely:

 tuning of PID controllers using fractional calculus
concepts;

 fractional PDcontrol of a hexapod robot;
 simulation and dynamical analysis of freeway traffic

systems;
 fractional dynamics in the trajectory control of

redundant manipulators;
 describing function of systems with nonlinear friction
 fractional order Fourier spectra in robotic

manipulators with vibrations;
 position/force control of a robotic manipulator;
 position/force control of two arms working in

cooperation;
 heat diffusion;
 electrical impedance of fruits;
 implementation of the fractional potential;
 stock pricing dynamics;
 dynamics in a particle swarm optimization algorithm;
 circuit synthesis using evolutionary algorithms.
The results demonstrate the importance of Fractional

Calculus in the modeling and control of many systems and
motivate for the development of new applications.
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