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Cellular B y

Vascular Progenitor Cells Isolated From Human Embryonic
Stem Cells Give Rise to Endothelial and Smooth
Muscle-Like Cells and Form Vascular Networks In Vivo

Lino S. Ferreira, Sharon Gerecht, Hester F. Shieh, Nicki Watson, Maria A. Rupnick,
Susan M. Dallabrida, Gordana Vunjak-Novakovic, Robert Langer

Abstract—We report that human embryonic stem cells contain a population of vascular progenitor cells that have the ability
to differentiate into endothelial-like and smooth muscle (SM)-like cells. Vascular progenitor cells were isolated from
EBs grown in suspension for 10 days and were characterized by expression of the endothelial/hematopoietic marker
CD34 (CD34" cells). When these cells are subsequently cultured in EGM-2 (endothelial growth medium) supplemented
with vascular endothelial growth factor-165 (50 ng/mL), they give rise to endothelial-like cells characterized by a
cobblestone cell morphology, expression of endothelial markers (platelet endothelial cell-adhesion molecule-1, CD34,
KDR/Flk-1, vascular endothelial cadherin, von Willebrand factor), incorporation of acetylated low-density lipoprotein,
and formation of capillary-like structures when placed in Matrigel. In contrast, when CD34™ cells are cultured in EGM-2
supplemented with platelet-derived growth factor-BB (50 ng/mL), they give rise to SM-like cells characterized by
spindle-shape morphology, expression of SM cell markers (a-SM actin, SM myosin heavy chain, calponin, caldesmon,
SM «-22), and the ability to contract and relax in response to common pharmacological agents such as carbachol and
atropine but rarely form capillary-like structures when placed in Matrigel. Implantation studies in nude mice show that
both cell types contribute to the formation of human microvasculature. Some microvessels contained mouse blood cells,
which indicates functional integration with host vasculature. Therefore, the vascular progenitors isolated from human
embryonic stem cells using methods established in the present study could provide a means to examine the mechanisms
of endothelial and SM cell development, and they could also provide a potential source of cells for vascular tissue
engineering. (Circ Res. 2007;101:286-294.)

Key Words: human embryonic stem cells m vascular progenitor cells m stem cell differentiation
m endothelial cells m smooth muscle cells

he vascularization of tissue constructs remains a major
challenge in regenerative medicine, as the diffusional
supply of oxygen can support only 100- to 200-wm thick
layers of viable tissue.!? The formation of a mature and
functional vascular network requires communication between
endothelial cells (ECs) and smooth muscle cells (SMCs).3-5
Isolating a population of human progenitor cells with poten-
tial for cell number expansion and differentiation into both
ECs and SMCs with high efficiency could benefit the area of
tissue engineering.?>-¢
Embryonic stem cells (ESCs) are a potential cell source for
induction of tissue vascularization.” Prior studies have de-
rived ECs and SMCs cells from a common progenitor (Flk-1"
cells) from mouse® and monkey ESCs,® but not from human

ESCs (hESCs). We previously reported that hESCs can
spontaneously generate ECs with definitive properties.®
These cells were isolated based on the expression of platelet
EC-adhesion molecule-1 (PECAMI) from embryoid bodies
(EBs) grown in suspension for 13 to 15 days. Using the same
endothelial'® or other (eg, CD34!"-12) markers, others have
isolated endothelial progenitor cells with the ability to differ-
entiate into mature endothelium. In addition, it has been
reported that hESCs can differentiate into mesodermal cells
that can give rise to ECs and SMCs!3; however, it is not clear
that these cells were derived from the same progenitor.
Here we report that cells isolated from EBs at day 10 and
expressing the hematopoietic/endothelial marker CD34 are
vascular progenitor cells that can be selectively induced to
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differentiate into either endothelial-like (EL) (using endothe-
lial growth medium [EGM-2] containing vascular endothelial
growth factor-165 [VEGF ¢s]), or smooth muscle-like (SML)
cells (using EGM-2 containing platelet-derived growth
factor-BB [PDGFgg]). When implanted in nude mice, these
cells contributed to the formation of functional microvessels
containing mouse blood cells. This study describes a potential
source of cells for vascular tissue engineering and provides a
model for the study of vascular differentiation.

Materials and Methods

An expanded Materials and Methods section is provided in the online
data supplement at http://circres.ahajournals.org

Cell Culture

hESC lines H9 and H13 with normal karyotype (Figure I in the
online data supplement) were grown (passages 25 to 45; WiCell,
Madison, Wis) on an inactivated mouse embryonic feeder layer (Cell
Essential, Boston, Mass) as previously described.!# The studies were
performed with H9 cell line unless otherwise stated. In some cases,
CD9"GCTM2" cells isolated by fluorescence-activated cell sorting
(FACS) from hESCs were used to characterize the undifferentiated
fraction of these cells.!> EB formation and culture, as well as culture
of relevant primary cells, can be found in the online data supplement.

Isolation and Culture of CD34* Cells

Selection of CD34" cells at day 10 was performed by labeling the
hESCs with the anti-CD34 antibody (QBEND/10, Miltenyi Biotec)
conjugated with magnetic beads. The magnetically labeled cells were
separated into CD34" and CD34" populations using a LS-MACS
column (Miltenyi Biotec). CD34 enrichment was confirmed by flow
cytometry analysis using a different anti-CD34 antibody (AC136;
Miltenyi Biotec). Isolated CD34" cells were grown on 24-well plates
(3%10* cells/well) coated with 1% gelatin and containing EGM-2, or
EGM-2 supplemented with VEGF,4 (50 ng/mL, R&D Systems) or
PDGFgg (50 ng/mL, R&D Systems).

Transplantation in Nude Mice

EL or SML cells alone (third passage, 0.5X10° cells in ~20 uL of
EGM-2), or EL cells mixed with SML cells (3:1; 0.5X10° cells in
total, in 20 L of EGM-2) were suspended in 0.350 mL of Matrigel
(BD Biosciences) on ice. The cell suspension was injected subcuta-
neously (23-gauge needle) in each side of the dorsal region of a
4-week-old male balb/c nude mice (2 implants per mouse; 3 mice per
experimental condition). Matrigel without cells was used as control.
After 28 days, the implants were removed, fixed overnight in 10%
(vol/vol) buffered formalin at 4°C, embedded in paraffin, and
sectioned for histological examination.

Histological Examination

Immunohistochemical staining of explants from animal studies was
performed using the EnVision+/HRP kit (Dako) with prior heat
treatment at 95°C for 20 minutes in ReVeal buffer (Biocare Medical)
or trypsin (1 mg/mL) for epitope recovery. For immunofluorescent
staining, anti-mouse IgG Cy3 conjugate was used as secondary
antibody followed by DAPI (4',6-diamidino-2-phenylindole) nuclear
staining. The primary antibodies were anti-human PECAM1 (1:20),
anti-human collagen type IV (1:500, Sigma), anti—a-smooth muscle
actin (a-SMA) (1:50), anti-human nuclei (1:20, Chemicon), S,-
microglobulin (1:50, BD Pharmingen), and the corresponding iso-
type controls. Biotinylated Ulex europaeus agglutinin-1 (UEA-1,
1:100; Vector Laboratories) was also used for histological staining.
The number of microvessels that were immunoreactive for human
collagen type IV was counted in 7 random fields from at least four
implants (2 sections for each implant) at X20 magnifications
(corresponding to an area of 3.4X10° pwm?).
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FACS Analysis

Undifferentiated hESCs, HUVECs, or CD34" cells grown in differ-
ent growth media were dissociated with nonenzymatic cell dissoci-
ation solution (Sigma) for 10 minutes. EBs were dissociated with 0.4
U/mL collagenase B (Roche Diagnostics) for 2 hours in a 37°C
incubator, followed by treatment with cell dissociation solution for
10 minutes, followed by gentle pipetting. Single cells were aliquoted
(1.25 to 2.5X10° cells were used per condition) and stained with
either isotype controls or antigen-specific antibodies. A detailed list
of the antibodies used and the staining procedure can be found in the
online data supplement.

Western Blot Analysis

Cells differentiated for 3 passages were harvested using trypsin and
lysed as reported elsewhere.!® Briefly, sample loading buffer and
reducing agent (both from Bio-Rad) were added to the lysates.
Samples were heated (5 minutes, 95°C) and loaded on 4% to 15%
Tris-HCI Criterion gels (Bio-Rad), separated by SDS-PAGE, and
transferred to nitrocellulose. Membranes were probed for smooth
muscle myosin heavy chain (SM-MHC) (8.5 pg/mL, DakoCytoma-
tion), a-SMA (0.7 pg/mL, DakoCytomation), and PECAM1 (2
pg/mL; Santa Cruz Biotechnology). Blot blocking and development
procedures can be found in the online data supplement.

RT-PCR Analysis

Total RNA was extracted using TRIzol (Invitrogen) according to the
instructions of the manufacturer. Total RNA was quantified by a UV
spectrophotometer, and 1 g was used for each reverse-transcription
sample. RNA was reversed transcripted with M-MLYV and oligo (dT)
primers (Promega) according to the instructions of the manufacturer.
PCRs were done with BIOTAQ DNA polymerase (Bioline) using 1
L of reverse-transcription product per reaction. To ensure semi-
quantitative results of the RT-PCR assays, the number of PCR cycles
for each set of primers was verified to be in the linear range of the
amplification. In addition, all RNA samples were adjusted to yield
equal amplification of GAPDH (glyceraldehyde-3-phosphate dehy-
drogenase) as an internal standard. Primer sequences, reaction
conditions, and optimal cycle numbers are published as supporting
information (supplemental Table I). The amplified products were
separated on 2% agarose gels with ethidium bromide.

Statistical Analysis
An unpaired Student ¢ test or l-way analysis of variance with
Bonferroni post test were performed for statistical tests by using
GraphPad Prism 4.0 (San Diego, Calif). Results were considered
significant when P=0.05.

Results

Vascular Differentiation During EB Development:
Effects of Serum Supplements
EBs were grown in medium containing knockout serum
(KO-SR) or FBS and analyzed over a 2-week period for
expression of well-characterized EC (PECAMI1, CD34 and
KDR/FIk-1),67::17-19 SMC (a-SMA and SM-MHC),6:813.17-19
and undifferentiated ESC markers (SSEA4, Nanog, and
alkaline phosphatase)?© at the gene and protein levels. Ini-
tially, hESCs expressed low or undetectable levels of CD34
and PECAMI, significant levels of KDR/Flk-1, and moderate
levels of a-SMA and SM-MHC (Figure 1A and 1B). The
expression of KDR/FIk-1 coexisted with the expression of
undifferentiated stem cell markers Nanog (Figure 1A),
SSEA4, and alkaline phosphatase, showing that cells are
undifferentiated.

The removal of undifferentiated hESCs from mouse em-
bryonic feeder layers and subsequent culture as EBs in
differentiation medium containing KO-SR reduced the ex-
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Figure 1. Expression of vascular and undifferentiated stem cell markers in hESCs. A, Flow cytometric analysis of undifferentiated and
vascular markers on undifferentiated hESCs. The percentages of positive cells were calculated based on the isotype controls (gray plot)
and are shown in the histogram plots. Values in histogram plots indicate averages+SD from 3 independent experiments. AP indicates
alkaline phosphatase. B, Gene analysis for vascular markers on undifferentiated hESCs.

pression of alkaline phosphatase and SSEA4, indicating that
cells were undergoing differentiation (Figure 2A.1). During
this differentiation process, a-SMA and SM-MHC were
highly expressed for 10 days (Figure 2A.1), expression of
CD34 peaked around day 10, KDR/FIk-1 expression de-
creased by day 4 and remained low thereafter, and PECAM1
expression was low through the 12 days of differentiation
(Figure 2A.2).

Next, we evaluated the effect of serum supplementation on
EB differentiation. Use of FBS instead of KO-SR resulted in
a slightly accelerated differentiation process, as indicated by
the further decrease of alkaline phosphatase and SSEA4
levels and a significant (P<<0.05) increase in the expression
of CD34 (Figure 2A.1). EBs grown in medium containing
FBS showed lower expression of a-SMA and SM-MHC than
EBs grown in medium containing KO-SR. Taken together,
medium supplementation with FBS enhanced the vascular
differentiation of cells in EBs and contributed to high yields
of CD34" cells.

Formation of Vessel-Like Structures in EBs

Confocal analysis of EBs cultured for 10 days showed that
CD34" cells formed extensive vascular networks (Figure
2B.1). The vessel-like structures resembled those we previ-
ously observed in PECAM1" cells?; however, these structures
were more frequent for CD34" than for PECAMI1" cells
(Figure 2B.1 and 2B.2). FACS analysis confirmed that all
PECAMI " cells coexpressed CD34 (supplemental Figure II).

Isolation of CD34* Cells

A CD34 marker was used to isolate vascular progenitor cells
by magnetic selection from EBs grown in differentiation
medium with FBS for 10 days (Figure 3A). These conditions
were selected because of high expression of CD34 during EB
development (Figure 2A.1 and 2A.2). The cells isolated were
92.5%£6.7% (n=3) pure for CD34 antigen (approximately a
9-fold enrichment of the initial cell population). At this stage,
CD34" cells coexpressed high levels of PECAMI (=~55%),
a-SMA (=45%), and SSEA4 (=~43%), moderate levels of
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Figure 2. Expression of vascular and
undifferentiated stem cell markers during
hESCs differentiation through EBs. A,
Summary of flow cytometric analysis for:
the expression of undifferentiating mark-
ers and vascular markers in hESCs (gray
columns) and EBs grown in differentiation
medium containing KO-SR (black col-
umns) or FBS (white columns) for 10 days

(A.1); the time-course expression of KDR/
Flk-1 ((J), CD34 (O), and PECAM1 (2) in
EBs grown in differentiation medium con-
taining KO-SR (A.2). In all graphs, values
indicate averages=SD from 3 indepen-
dent experiments. *P<0.05, **P<0.01,
and **P<0.001. AP indicates alkaline
phosphatase. B, Confocal microscopy of
stained 10-day-old human EBs grown in
differentiation medium containing FBS.
CD34* and PECAM17 cells forming vas-
cular networks along the EBs (B.1; magni-
fication, X25). Bar=50 um. Quantification

of EBs that stained for PECAM1 and CD34 (B.2). At least 100 EBs were scored (average+SD; n=3). *P<0.05.

KDR/FIk-1 (=16%), and low levels of the hematopoietic
marker CD45 (=1%) (Figure 3B). The presence of these
markers was also confirmed at gene level (Figure 3C).

Induction of CD34* Cell Differentiation Into
Endothelial and SMC Lineages

The isolated CD34" cells were cultured with EGM-2 alone or
medium supplemented with VEGF,4s (50 ng/mL) or PDGFg;
(50 ng/mL) (Figure 3A) because VEGF,s and PDGFgg have
been reported to facilitate the differentiation of stem cells into
ECs and SMCs, respectively.®1® CD34" cells cultured in
VEGF-supplemented EGM-2 for 1 passage (10 to 15 days
after cell seeding) expressed high levels of EC markers
(Figure 4A). Similar results were obtained with H13 cell line
(supplemental Figure III). As compared with human umbili-

cal vein ECs (HUVECs), CD34" cells had slightly lower
expression of PECAM1 and KDR/FIk-1 (Figure 4A), and
higher expression of CD34. At this stage, the cells lost nearly
all expression of the marker SSEA4, indicating their differ-
entiated state. CD34" cells grown in the same conditions as
CD34" cells showed minimal expression of the endothelial
markers (supplemental Figure IV), indicating that CD34"
cells, but not the CD34" cells, can be effectively induced
toward an endothelial lineage. CD34" cells cultured in
EGM-2 or EGM-2 supplemented with PDGFg; for 1 passage
showed a much lower expression of PECAMI1 (26% and
18%, respectively) than the CD34" cells cultured in VEGF-
supplemented medium (94%) (supplemental Figure IV). As
EGM-2 contains <5 ng/mL VEGF; (as measured by
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- 3 g . and differentiation of CD34" cells. Bar cor-
W o 1o 1w -z responds to 500 um. B, Phenotypic analy-
= F o sis of CD34" cells after MACS separation.
o 88% Values within dot plots indicate percent-
" ; 0% p TS : age of cells in respective quadrants. C,
e 0 16 10 ¢ % 1d ¢ 1@ ¢  Geneanalysis of CD34" cells after MACS
KDRIFlk-1 cD34 separation.
10!
C
@ R recamt
- 3 ™™ KDR/Flk-1
a g 1 g c-SMA
10! B sM-MHC
E==lGADPH

1d e @ ¢ 10 1
SSEA

i 1@ 16 1@
cD34

Downloaded from http://circres.ahajournals.org/ at Columbia University on January 23, 2014


http://circres.ahajournals.org/
http://circres.ahajournals.org/

290

Circulation Research

August 3, 2007

A HUVEC +VEGF-1P +VEGF-3P EGM2-3P +PDGF-3P
300 100 100 200 200
T 99%[. 94%|°98% | nl  10%. 5%
= 60 120 1201
3 150 50
S a0 80 20
76 lk 5l 25 4 @0
0 A 0 “ 4 . 0 L 0 0
W 1l i w0 i 1 @ @ d o d @ @ d @ d iF i ad o d d @ ad
_ PECAM1—{— — >
100 200 — = f—
37%)|" 5% 12%)|” 20%] " 0%
225 75
# 60 120 10
3 150 ) 50
i} 40 80 80
0 Q 1] 0 0
id 1w iF a0 i d id 1@ ad i d iF @ i d 1 d 1@ ad if il iF P 1d
& KDRI/Flk-1 »
100 100 200 , 200
18%]" 98% 65%]| 2%]” 1%
2% 75
60 120 120
3150 50
(5] 40 , 80 80
75 20 !! zsﬁ 40 40/
Lﬁg O k 0 \
1

1d1 .mlcgsie w0 ad 10’ 1w 1 d d 1@ d ad ad d @ il Sd’ W 16 0 :D’
a0 0% o 29 100 0% 20 0° 20 =
5 AR ” e % 0%
80 120 12
g™ a0 & 8 8
B 20 = 40 A 40
G %SIEAE fd’ R R R R R R R ¥ BRI R R e B 10 1
LL LL
B ¥, 388 ¢
5 = 0 > o 220 &
w w + + 2 o2
pECAM1 il kd 358> L6
smmHc B IR B4 2 2@ S0 8=
GADPH sttt et it 3 10177 “a s + W
> 0.57 + 0 §
& 0.0 N

GADPH s Bl s s S

"PECAM1 SM-MHC o-SMA

Figure 4. Endothelial and SMC differentiation of CD34* cells. A, FACS analysis of HUVECs and CD34" cells isolated from EBs grown
in differentiation medium with FBS for 10 days and further differentiated in EGM-2, EGM-2 supplemented with 50 ng/mL VEGF g5, or
EGM-2 supplemented with 50 ng/mL PDGFgg for 1 passage (1P; 10 to 15 days after cell seeding) or 3 passages (3P; ~28 days after
cell seeding). In all graphs, the percentages of positive cells were calculated based in the isotype controls (gray plot) and are shown in
each histogram plot. B, Western blot analysis for CD34* cells differentiated in EGM-2, EGM-2 supplemented with 50 ng/mL VEGFgs, or
EGM-2 supplemented with 50 ng/mL PDGFgg for 3 passages. HUVECs and SMCs are included for reference. GADPH was used as
standard. C, Relative band density for vascular markers using GADPH as a control protein.

ELISA), VEGF concentration appears to have an important
role in the endothelial differentiation of CD34" cells.

The proliferation rate of CD34" cells cultured in VEGF-
supplemented medium is high, achieving 20 population

doublings over a 2-month period. FACS analyses of CD34"*
cells cultured for 3 passages (Figure 4A) showed the expres-
sion of PECAMI comparable to that in HUVECs (similar
results were obtained by Western blot; Figure 4B and 4C),
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Figure 5. Characterization of hES-derived endothelial cells and SMCs grown in culture. A, EL cells have cobblestone morphology (A.1;
light microscopy, bar corresponds to 50 um), they show VE-cadherin at cell-cell junctions (A.2; magnification, X40), von Willebrand
factor (vWF) in the cell cytoplasm (A.3; magnification, X40), and have the ability to uptake acetylated low-density lipoprotein (ac-LDL)
(A.4; magnification, xX40), as shown by immunofluorescence staining. B, SML cells exhibit spindle-shaped morphology (B.1; light
microscopy; bar corresponds to 50 um) and highly express smooth muscle markers including a-SMA (B.2; magnification, X40),
SM-MHC (B.3, X40), and calponin (B.4; magnification, X40), as shown by immunofluorescence staining. C, EL cells form cords when
placed in Matrigel for 24 hours (C.1), whereas SML cells showed limited ability to form them during the same period of time (C.2).
Scale bar=50 um. The cord length (C.3) and branching points (C.4) on the cord-like structures formed by EL is statistically higher
than the values found for SML cells during 24 or 48 hours. The counts were performed using an objective of X10. Results are
averages*SD, n=4. *P<0.001. D, Transmission electron microscopy images of cord sections formed by EL cells in Matrigel, showing
lumen (Lu) formation (D.1). The cells present Weibel-Palade-like bodies (D.2, arrow) in the cytoplasm and form tight intercellular
junctions (D.2; arrowhead). Scale bar=0.47 um. D, RT-PCR analysis for endothelial and SMC markers in CD34" cells differenti-
ated in EGM-2," EGM-2 supplemented with 50 ng/mL VEGF45,2 and EGM-2 supplemented with 50 ng/mL PDGFgg.2 Ang indicates

angiopoietin; Cald, caldesmon.

albeit different regarding the expression of CD34 and KDR/
Flk-1 markers. Karyotyping analyses showed that genetic
integrity was preserved during differentiation (supplemental
Figure V). Differentiated CD34" cells stained positively for
vascular endothelial (VE)-cadherin at cell-cell adherent junc-
tions, produced von Willebrand factor, and were able to
incorporate acetylated low-density lipoprotein (Figure 5A),
typical markers found in ECs (supplemental Figure VI). Genetic
analysis demonstrated that these cells express PECAM1, CD34,
VE-cadherin, von Willebrand factor, and Tie2 receptor'® but are
negative for SMC markers including SM-MHC, SMa-22, and
angiopoietin-161721 (Figure 5E). CD34" cells isolated from

H13 cell line and differentiated in VEGF-supplemented
medium presented lower levels of PECAMI1 (39% versus
98%) and CD34 (14% versus 65%) compared with the H9
cell line (supplemental Figure III), suggesting slightly differ-
ent differentiation profiles in the 2 cell lines.

Cells cultured in EGM-2 or PDGFgg-supplemented me-
dium for 3 passages expressed high levels of a-SMA,
SM-MHC, and calponin (Figures 4 and 5B), low levels of
endothelial markers (=20%), and no detectable expression of
the undifferentiating stem cell marker SSEA4. Western blot
analysis showed that expressions of SM-MHC and a-SMA
were higher in cells differentiated in EGM-2 supplemented
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with PDGFg; (Figure 4B and 4C). As confirmed by RT-PCR
(Figure 5E), PDGFgg-supplemented EGM-2 upregulated the
expression of definitive SMC markers including caldesmon
and SMa-22,'72! and the expression of angiopoietin-1, a
ligand produced by SMCs that activates the receptor Tie-2
found on ECs.?? This indicates that the presence of PDGFg;
contributed to cell maturation toward SMC phenotype. How-
ever, this process is not complete because cells express the
endothelial markers angiopoietin-2 and Tie2. To examine
whether these SML cells were functional, they were subjected
to the effects of carbachol and atropine?* (supplemental
Figure VII). After exposure to carbachol (107> mol/L) the
cells contracted 30% after 30 minutes. In addition, the musca-
rinic antagonist atropine was shown to block the carbachol-
mediated effects. Similar results were obtained in human
vascular SMCs (hVSMCs). CD34" cells grown in the pres-
ence of PDGF had higher proliferation rates than CD34" cells
grown in the presence of VEGF, with 42 population dou-
blings over a 2-month period. Karyotyping analyses showed
that genetic integrity was preserved during differentiation
(supplemental Figure V).

The ability of CD34" cells differentiated in VEGF or
PDGF-supplemented medium to form cord-like structures
was also assessed by culturing these cells in the extracellular
matrix basement membrane, Matrigel.*1324 CD34" cells dif-
ferentiated in VEGF-supplemented medium were able to
spontaneously reorganize into cord-like structures when
maintained in culture for 24 hours (Figure 5C and supple-
mental Figure VIII). In contrast, CD34™ cells differentiated in
EGM-2 containing PDGFg have limited ability to form
cord-like structures (Figure 5C). Transmission electron mi-
crographs of cord sections formed by CD34" cells differen-
tiated in VEGF 4s-supplemented medium showed the pres-
ence of a lumen (Figure 5D.1), thus confirming the capacity
of these cells to form vascular networks in vitro. In addition,
these cells presented typical endothelial features (supplemen-
tal Figure VI) such as the presence of round or rod-shaped
structures that resemble Weibel-Palade bodies and tight
junctions between cells (Figure 5D.2). Based on the pheno-
type and genotype expression, the CD34" cells differentiated
in VEGF,ss or PDGFg-supplemented medium were desig-
nated EL and SML cells, respectively.

Transplantation of EL and SML Cells Into Nude
Mice Resulted in Formation of Microvessels

EL or SML cells alone or EL mixed with SML cells (3:1
ratio) were suspended in Matrigel and injected subcutane-
ously in the dorsal region of nude mice. After 28 days, the
mice were injected intravenously with fluorescein isothiocya-
nate—dextran solution. The Matrigel implants were then
removed and imaged. Microvessels that support blood flow
were observed in Matrigel implants containing EL or SML
cells but rarely in Matrigel without cells (supplemental Figure
IX). Matrigel implanted in the absence of cells showed no
microvessels inside of the matrix, only at the periphery
(Figure 6A). The constructs with EL cells showed the
presence of microvessels within the Matrigel (Figure 6B.1),
most of which (=95%) were patent with empty lumens,
whereas a small percentage (=~5%; Figure 6B.2) contained

mouse red blood cells. These microvessels were reactive for
UEA-1 (specific for human ECs?%), anti-human PECAMI,
anti-human nuclei, and anti-human collagen type IV (colla-
gen IV is a component of the extracellular matrix actively
produced by ECs?°) (Figure 6.B and supplemental Figures X
and XI), indicating that they were composed of human ECs.
In general, the cells and microvessels inside Matrigel were
not reactive for a-SMA (Figure 6B.5). On the other hand,
implants formed by a mixture of EL and SML showed the
presence of microvessels that were immunoreactive to the
same human markers described above (Figure 6C). A fraction
of these microvessels (=5% to 6%) contained mouse blood
cells (Figure 6C.1). Cells inside Matrigel stained positively
for PECAMI (=41%) or a-SMA (=~20%); in this last case,
they formed small tubules (Figure 6C.4) or surrounded
human microvessels (Figure 6C.5; supplemental Figure XI).
Thus, these cells have properties of SM cells. Constructs with
only SML cells stained for a-SMA (supplemental Figure XI)
showing the differentiation of these cells into the SMC
lineage.

Discussion

We established a protocol for the isolation and differentiation
of vascular progenitor cells from hESCs. We show that a CD34*
population (of 93% purity) contains progenitors that can give
rise to both EL. and SML cells. This procedure includes 3
different steps: (1) the differentiation of hESCs through EBs
for 10 days; (2) the isolation of CD34" cells by immunomag-
netic beads; and (3) the culture of these cells in gelatin-coated
dishes in the presence of EGM-2 enriched with VEGF,4s or
PDGFg; for EC or SMC differentiation, respectively.

One of the specific limitations of our study is that single
cell isolation and parallel divergence of its progeny was not
performed. This issue should be addressed in future studies to
show that the EB-derived CD34" cell that becomes a SML
with PDGF exposure is the same cell that becomes an EL
with VEGF exposure.

CD34 marker was selected to isolate vascular progenitor
cells for several reasons. First, previous studies showed that
CD34" cells from human blood cells could give rise to ECs
and SMCs.!8.19.27.28 Second, human EBs express this marker
at higher levels than other endothelial markers including
KDR/flk-1 and PECAMI. Third, CD34 is upregulated during
differentiation of human EBs, in contrast to KDR/Flk-1, and
all the cells that stained positively for PECAMI1 on day 10
coexpress CD34. Fourth, CD34" cells form vessel-like struc-
tures within EBs.

The composition of differentiation medium exerts a signif-
icant effect on the differentiation of EBs and yield of CD34*
cells. EBs grown in differentiation medium containing
KO-SR yield fewer CD34" cells than EBs grown in differ-
entiation medium containing FBS. This suggests that factors
present in FBS but not in KO-SR may play an important role
in the vascular differentiation of hESCs. Furthermore, our
data indicate that EBs grown in FBS media differentiate more
rapidly than EBs grown in KO-SR media. This agrees with
previous studies showing that KO-SR contribute for an
increase growth rate of undifferentiated cells.?®
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Figure 6. Transplantation of EL or SML cells in Nude mice. Matrigel alone (A), Matrigel containing EL cells (B), or a mixture of EL and
SML cells (3:1) (C) was injected subcutaneously in the dorsal region of the nude mice (n=3, for each condition). After 28 days, the
implants were removed, fixed, and processed for histological evaluation. A, Hematoxylin and eosin staining of Matrigel construct with-
out cells showing mouse microvessels at the periphery of the implant (arrows) but not within Matrigel. B, The implants with EL cells
show microvessels that are reactive for human UEA-1 (B.1 and B.2), anti-human PECAM1 (B.3; magnification, X64), and anti-human
collagen type IV (B.4; magnification, X64); in some cases, they have mouse blood cells in their lumen (B.2). These microvessels are not
reactive for anti-human «-SMA (B.5). B, The constructs with a mixture of EL and SML cells show microvessels that are reactive for
human UEA-1 (C.1), anti-human PECAM1 (C.2; magnification, X25), and anti-human collagen type IV (C.3; magnification xX64). The
microvessels presented either an empty lumen (C.1, open arrowhead) or a lumen with mouse blood cells (C.1, closed arrowhead).
a-SMA* cells were observed inside of the Matrigel, and, in some cases, they formed small tubules (C.4). In the periphery of the Matri-
gel (C.5), -SMA™ cells surrounded human ECs and formed microvessels carrying mouse blood. Scale bar=50 um. D, Counts of
human type IV collagen immunoreactive annular structures per 5 random high-power fields.

Recently, it has been reported that CD34"CD31"KDR"!2
or CD34"11 cells isolated from hESCs and differentiated in
the absence!? or presence!! of VEGF,s, respectively, can give
rise to ECs. Our data show that CD34" cells cultured in the
presence of VEGF s differentiated into EL cells, as con-
firmed by their morphology, biochemical markers, and func-
tional studies. We further demonstrate that the levels of
VEGEF have an important role in the differentiation of CD34"
cells into ECs. This effect has not been previously described.
When CD34" cells are cultured in EGM-2 (low levels of
VEGEF), only ~26% express PECAM1 marker after the first
passage, and they start to lose this marker after several
passages. This may indicate that other cell types take over the
cell culture likely attributable to a high proliferation rate, or
that the starting cells may differentiate into other cell types. It
should be noted that only CD34" cells, not CD34", cells
express significant levels of endothelial markers when ex-
posed to VEGF-enriched medium, which shows that medium
alone is not sufficient for the differentiation of hESCs into the
vascular cell lineage. Our results also show that the differen-
tiation of CD34" cells into the endothelial lineage is slightly
different for H9 and H13 cell lines. It is unclear whether this

is attributable to the presence of different populations of ECs,
as shown in other ESCs,?4 or differences in the differentiation
profile in both cell lines.

In this study, we showed the transplantation of EL cells
into nude mice using Matrigel as scaffold contributed for the
formation of human microvessels (Figure 6). In some cases,
these microvessels contained mouse blood cells and sup-
ported blood flow, suggesting that these vessels anastomosed
with the host vasculature. Our data agree with a study
published during the reviewing process of this work, report-
ing that the transplantation of CD34" cells, isolated from
hESCs, in mice contributed to the formation of blood vessels
that integrated into the host circulatory system.3°

We also demonstrated that CD34" cells can give rise to
SML cells and that PDGF plays an important role in this
differentiation process. It has been reported that PDGFgp
promotes the differentiation of mouse ESCs and CD34" cells
isolated from human blood into SMCs.6-13:19 CD34" cells
cultured in EGM-2 containing PDGFg; for 3 passages show
minimal expression of EC markers but significant expression
of SMC markers. The expression of SMC markers was also
observed in cells grown in EGM-2 alone. However, the
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expression of SM-MHC, a later marker in SMC differentia-
tion that is not detected in other cell types,>' was higher in
PDGF conditions. In addition, upregulation of SMa-22,
caldesmon, and angiopoietin-1, known markers for maturing
SMCs,!72! was achieved only in differentiating CD34" cells
in PDGF-enriched medium. Furthermore, these cells seem
functionally different from those differentiated in EGM-2 or
VEGF-supplemented EGM-2 because they rarely form cord-
like structures on Matrigel. Our data also suggest that the
differentiation of SML is not complete because these cells
express a low percentage of PECAMI1 (=5%) and CD34 (=1%)
markers and genotypically express Tie2 and angiopoietin-2
markers known to be displayed by ECs. SML cells have the
ability to contract or relax in response to a variety of pharma-
cological agents like SMCs'823 and thus are functional. When
SML cells were transplanted into nude mice, using Matrigel as
scaffold, a-SMA™ cells were observed, forming either small
tubules or surrounding microvessels.

Future studies should include further analysis of the mo-
lecular mechanism underlying vascular lineage differentia-
tion and the influence of other growth factors in this process.
It would be also important to test new scaffolds to improve
the in vivo engraftment of these cells with the host vascula-
ture of ischemic animal models.
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Expanded Materials and Methods

Cell culture. To induce the formation of human EBs, the undifferentiated hESCs were
treated with 2 mg/mL type IV collagenase (Invitrogen) for 2 h and then transferred (2:1) to
low attachment plates (@=10cm, Ref: 3262, Corning) containing 10 mL of differentiation
medium [80% Knockout- Dulbecco’s Modified Eagle Medium (Invitrogen), 20% Knockout-
serum (KO-SR, Invitrogen) or fetal bovine serum (FBS, Hyclone), 1 mM L-glutamine, 0.1
mM [B-mercaptoethanol and 1% nonessential amino acid stock (all from Invitrogen)]. EBs
were cultured for 12 days at 37 °C, and 5% CO; in a humidified atmosphere, with media
changes performed every 3-4 days. To serve as controls, human vascular smooth muscle cells
(hVSMCs) and human umbilical vein endothelial cells (HUVECs) were obtained from
Cambrex and cultured in EGM-2 or SmGM-2 media (Cambrex). Medium was changed every

other day.

Transmission electron microscopy. Cells seeded in Matrigel-coated 24-well plate were
fixed for 1 h in 2.5% (w/v) glutaraldehyde, 3% (w/v) paraformaldehyde, and 5.0% (w/v)
sucrose in 0.1 M sodium cacodylate buffer (pH 7.4) and then post-fixed in 1% (w/v) OsO4 in
veronal-acetate buffer for 1 h. The cells were stained en bloc overnight with 0.5% uranyl
acetate in veronal-acetate buffer (pH 6.0), dehydrated, and embedded in Spurrs resin.
Sections were cut on a Reichert Ultracut E at a thickness of 70 nm with a diamond knife.

Sections were examined with a Philips EM410 electron microscope.

Immunostaining. For staining, EBs were transferred to gelatin-coated cover slips with
differentiation medium containing 20% (v/v) fetal bovine serum (FBS), allowed to attach

overnight, and then, fixed with 4% (w/v) paraformaldehyde for 30 minutes at room
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temperature. For the evaluation of SMC or EC phenotypes in differentiated CD34" cells a
similar fixation procedure was adopted. After blocking with 3% BSA solution, the cells were
stained for 1 h with the following anti-human primary antibodies: PECAM1 (JC70A), CD34
(QBEnd 10), vWF (F8/86), a-SMA (1A4), SM-MHC (SMMS-1), calponin (CALP) (all from
Dako) or VE-cad (F-8; Santa Cruz Biochemicals). In each immunofluorescence experiment,
an isotype-matched IgG control was used. Binding of primary antibodies to specific cells was
detected with anti-mouse IgG Cy3 conjugate (Sigma). Cell nuclei were stained with 4°,6-
diamidino-2-phenylindole (DAPI) or Topro-3 (Sigma). Immunostaining was examined with
either a fluorescence microscope (Nikon) or Zeiss LSM 510 confocal microscope.

For uptake of Dill-labelled acetylated low-density lipoprotein (ac-LDL), differentiated
CD34" cells were incubated with 10 mg/mL Dill-labelled ac-LDL (Biomedical Technologies)
for 4 h at 37 °C. After incubation, cells were washed three times with PBS, fixed with 4 %

(w/v) paraformaldehyde for 30 min and visualized with a fluorescent microscope.

Matrigel assay. For Matrigel differentiation assay, a 24-well plate was coated with 0.4 mL of
Matrigel per well and incubated for 30 minutes at 37 °C. CD34" cells differentiated in EGM-
2 medium, or EGM-2 medium supplemented with VEGF 45 or PDGFgp, for 3 passages, were
seeded on top of the Matrigel at a concentration of 2.5 x 10* - 1 x 10° per 300 uL of culture
medium. After 1 h of incubation at 37 °C, 1 mL of medium was added. Cord formation was

evaluated by contrast-phase microscopy 24 or 48 h after seeding the cells.

Fluorescence-activated cell sorting (FACS) analysis. Single cells were aliquoted (1.25-2.5
x 10> cells were used per condition) and stained with either isotype controls or antigen-
specific antibodies: SSEA-4-PE (MC813-70, R&D Systems), PECAM1-FITC (30884X, BD

Pharmingen), CD34-PE/CD34-FITC (ACI136, Miltenyi Biotec), KDR/FIkI1-PE (89106,
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R&D) and CD45-FITC (HI30, BD Pharmingen). Cells were analyzed without fixation on a
FACScan (Becton Dickinson) using propidium iodide to exclude dead cells. For a—SMA,
SM-MHC (all from Dako) and alkaline phosphatase-APC (R&D systems) markers, an
intrastain kit (Dako) was used for the fixation and permeabilization of cell suspensions. In
case of a—SMA and SM-MHC, the monoclonal antibodies were conjugated with a FITC-

secondary antibody (Dako). Data analysis was carried out using CellQuest software.

Western Blot Analysis. Blots were blocked (30 min), incubated in primary antibody in block
(1 h, Pierce), rinsed three times in 10 mM Tris-base /150 mM NaCl / 0.1% Tween20 (TBST),
pH 7.6, incubated in appropriate horseradish peroxidase-conjugated secondary antibody (anti-
mouse IgG or anti-rabbit IgG, 1:1500, Cell Signaling) in block (1 h), and rinsed three times
(TBST). Blots were developed using enhanced chemiluminescent kits (Amersham) and
exposed to BioMax XAR film (Kodak). Blots were similarly reprobed for glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) (2 pg/ml, Santa Cruz Biotechnology).
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Figure 1- Karyotyping analyses of H13 (A) and H9 (B) cell lines. In HI13 cells the
karyotype obtained was 46, XY and is characteristic of a chromosomally normal male. In H9
cells the karyotype obtained was 46, XX and is characteristic of a chromosomally normal
female. Cells were prepared and analysed as previously described (Cowan, C.A. New
England Journal of Medicine 2004; 350:1353-1356). Approximately 20 metaphases spreads
were counted and 5 metaphases analysed for each sample. Karyotyping analysis was
performed by the Dana Faber /Harvard Cancer Research Center, Cytogenetics Laboratory,
Cambridge, MA.
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Figure 2 — Expression of CD34 and PECAM1 in EBs grown in differentiation medium
with FBS for 10 days, as assessed by FACS analysis. Values indicate average + SD, from 3

independent experiments.
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Figure 3- FACS analysis of endothelial and smooth muscle cell markers in differentiated
CD34" cells isolated from H13 cell line. The cells were isolated from EBs grown in differentiation
medium containing FBS for 10 days and then cultured in EGM-2 medium supplemented with 50
ngmL™" of VEGF¢s (A, B) or PDGFgg (C), for 1 (A) or 3 passages (B,C). Percent of positive cells

were calculated based in the isotype controls (grey plots) and are shown in each histogram plot.
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Figure 4- Expression of endothelial markers in differentiated CD34 and CD34" cells. A)

FACS analysis of CD34" cells isolated from EBs grown in differentiation medium with FBS for 10

days and further differentiated in EGM-2 medium supplemented with 50 ngmL™" VEGF s (A), for

1 passage (10-15 days after cell seeding). In all graphs, the percents of positive cells were calculated

based in the isotype controls (grey plot) and are shown in each histogram plot. B) FACS analysis of

CD34" cells isolated from EBs grown in differentiation medium with FBS for 10 days and further

differentiated in EGM-2 medium (A) or EGM-2 medium supplemented with 50 ngmL™ PDGFgg

(B), for 1 passage (10-15 days after cell seeding).
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Figure 5- Karyotyping analyses of CD34" cells differentiated in VEGF (A) or PDGF (B)
supplemented media for three passages. In both differentiated cells the karyotype obtained was

46, XX, and no clonal aberrations were observed in 20 cells examined.
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Figure 6- Characterization of HUVECs and human vascular smooth muscle cells (hVSMCs).
A) HUVEC cells show vWF (x 125), have the ability to uptake ac-LDL (x 125) and present
Weibel-Palade bodies (arrow) in the cytoplasm as shown by electron microscopy. Bar corresponds

to 0.47 um and in the inset 0.26 pm. B) hVSMCs express SM-MHC (x 40), a-SMA (x 40) and

calponin (x 40).
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Figure 7- SML cells have the ability to contract to carbachol as hVSMCs. A,B) SML cells
cultured for 3 passages were washed and contraction was induced by incubating these cells with 10
> M Carbachol in DMEM medium for 30 min. Contraction was calculated by the difference of cell
area at time zero and time 30 minutes. Bright-field images (x10 or x20) were used for this purpose.
In a separate experiment, the cells were induced to relax by incubation with 10* M atropine in
DMEM for 1 h and then induce to contract with 10° M Carbachol. Contraction was calculated as
before. hVSMCs (3™ passage) were used as controls. In B, morphological changes when SML were

stimulated by carbachol (B.1 and B.2: before and after treatment, respectively).
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Figure 8- Cord-like structures formed by differentiated CD34" cells (isolated from H13 cell
line) on matrigel. CD34" cells differentiated on EGM-2 medium supplemented with 50 ngmL™
VEGF ¢ form continuous and complex cords after their seeding on matrigel for 24 h. Bar

corresponds to 400 and 100 um in A and B, respectively.
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Matrigel-control

Figure 9- Formation of vessels in matrigel implants that support blood flow. EL and SML cells
alone or EL cells mixed with SML cells were suspended in Matrigel and injected subcutaneously in
the dorsal region of a balb/c nude mice. After 28 days, the mice were injected intravenously,
through the tail vein, with 0.2 mL of PBS containing 50 mg/mL of FITC-dextran (M,, 145 kDa).
Animals were sacrificed 10 min following injection and the Matrigel implant removed and imaged.
Microvessels that support blood flow were observed in Matrigel implants containing EL (x10),

SML (x10) or a mixture of EL and SML (x10) cells, but rarely in Matrigel without cells.

13



CIRCRESAHA/2007/150201

A L
wh
.y

“ 1%
Y

..‘|\,\1,:".‘ A aNe
v [

‘£ s - ; &

S N S 5P

-f T Tt e ae a
e g b e B
4 g A Lkl

Figure 10- Transplantation of EL and SML cells in balb/c nude mice. Negative controls for
samples of matrigel containing EL cells (A), or a mixture of EL and SML cells (3:1) (B). Negative
controls for UEA-1 (A.1 and B.1), collagen type IV (A.2 and B.2, x64), PECAMI1 (B.3, x25), and
o-SMA (B.4, x64). Bar represents 50 um. In case of UEA-1, the negative control was prepared
according to the manufacturer specifications, i.e., by inhibiting the UEA-1 with 100 mM L-(-)-
fucose (Sigma) in 10 mM HEPES, pH 7.5 containing 0.15 M NaCl, for 30 min, at room

temperature.
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Figure 11- Transplantation of EL and SML cells in balb/c nude mice. A) The constructs with
EL and SML cells contained regions that stained positively for human B,-microglobulin, a specific
human protein involved in the HLA class I antigen complex. B) Cells in these constructs stained
positively for human PECAMI1 and human anti-nuclei (B.1), and thus have properties of human
endothelial cells while others stained positively for a-SMA and f,-microglobulin (B.2) and thus
have properties of human smooth muscle cells. C) The constructs with SML cells stained positively

for a-SMA. Bar corresponds to 50 um.
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Supplemental Table 1- Primer sequences, reaction conditions' and optimal cycle numbers used for
the RT-PCR analyses of vascular markers.

Gene transcript Primer sequences (5' to 3', Fu/Ry) Product Cycles Annealing  [MgCl;]

(bp) temp. (°C) (mM)

PECAM1° GCTGTTGGTGGAAGGAGTGC 620 28 55 15
GAAGTTGGCTGGAGGTGCTC

CD34° TGAAGCCTAGCCTGTCACCT 200 30 55 15
CGCACAGCTGGAGGTCTTAT

KDR/FIk-1 CTGGCATGGTCTTCTGTGAAGCA 790 35 60 1.5

AATACCAGTGGATGTGATGGCGG

Angiopoietin-1 GGGGGAGGTTGGACTGTAAT 362 35 60 15
AGGGCACATTTGCACATACA

Angiopoietin-2 GGATCTGGGGAGAGAGGAAC 535 35 60 15
CTCTGCACCGAGTCATCGTA

Tie2 ATCCCATTTGCAAAGCTTCTGGCTGGC 512 35 60 15

TGTGAAGCGTCTCACAGGTCCAGGATG

VE-cad ACGGGATGACCAAGTACAGC 596 35 60 15
ACACACTTTGGGCTGGTAGG

Von Willebrand ATGTTGTGGGAGATGTTTGC 656 40 55 1.0
Factor (VWF) GCAGATAAGAGCTCAGCCTT

SM-MHC GGACGACCTGGTTGTTGATT 670 35 60 15
GTAGCTGCTTGATGGCTTCC

a-SMA CCAGCTATGTGAAGAAGAAGAGG 965 35 60 15

GTGATCTCCTTCTGCATTCGGT

Caldesmon AACAACCTGAAAGCCAGGAGG 530 35 60 15
GCTGCTTGTTACGTTTCTGC

SMa-22 CGCGAAGTGCAGTCCAAAATCG 928 35 60 15

GGGCTGGTTCTTCTTCAATGGGG

GAPDH AGCCACATCGCTCAGACACC 302 27 60 15

GTACTCAGCGCCAGCATCG

'PCR conditions consisted of the following: 5 minutes at 94 °C (hot start), 30 to 40 cycles (actual number
noted in the table); 94 °C for 30 seconds, annealing temperature (noted in the table) for 30 seconds; 72 °C for
30 seconds. A final 7 minutes extension at 72 °C was performed at the end.

*PCR conditions: 15 minutes at 95°C, 1 minute at 94°C, annealing temperature for 1 minute, 72°C for 1
minute. A final 10 minutes extension at 72°C was performed at the end.
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