2,147 research outputs found

    Arabinoxyloglucan Oligosaccharides May Contribute to the Antiadhesive Properties of Porcine Urine after Cranberry Consumption

    Get PDF
    © 2019 As part of our continuing investigation for interesting biological activities of native medicinal plants, thirty-nine plants, obtained from diverse areas in Saudi Arabia and Yemen, were screened for insecticidal activity against yellow fever mosquito Aedes aegypti (L.). Out of the 57 organic extracts, Saussurea lappa, Ocimum tenuiflorum, Taraxacum officinale, Nigella sativa, and Hyssopus officinalis exhibited over 80% mortality against adult female Ae. aegypti at 5 μg/mosquito. In the larvicidal bioassay, the petroleum ether extract of Aloe perryi flowers showed 100% mortality at 31.25 ppm against 1st instar Ae. aegypti larvae. The ethanol extract of Saussurea lappa roots was the second most active displaying 100% mortality at 125 and 62.5 ppm. Polar active extracts were processed using LC-MS/MS to identify bioactive compounds. The apolar A. perryi flower extract was analyzed by headspace SPME-GC/MS analysis. Careful examination of the mass spectra and detailed interpretation of the fragmentation pattern allowed the identification of various biologically active secondary metabolites. Some compounds such as caffeic and quinic acid and their glycosides were detected in most of the analyzed fractions. Additionally, luteolin, luteolin glucoside, luteolin glucuronide and diglucuronide were also identified as bioactive compounds in several HPLC fractions. The volatile ketone, 6-methyl-5-hepten-2-one was identified from A. perryi petroleum ether fraction as a major compound

    Antimicrobial and Antiinsectan Phenolic Metabolites of Dalea searlsiae

    Get PDF
    Continued interest in the chemistry of Dalea spp. led to investigation of Dalea searlsiae, a plant native to areas of the western United States. Methanol extractions of D. searlsiae roots and subsequent chromatographic fractionation afforded the new prenylated and geranylated flavanones malheurans A–D (1–4) and known flavanones (5 and 6). Known rotenoids (7 and 8) and isoflavones (9 and 10) were isolated from aerial portions. Structure determination of pure compounds was accomplished primarily by extensive 1D- and 2D-NMR spectroscopy. The absolute configurations of compounds 1–5, 7, and 8 were assigned using electronic circular dichroism spectroscopy. Antimicrobial bioassays revealed significant activity concentrated in the plant roots. Compounds 1–6 exhibited MICs of 2–8 μg/mL against Streptococcus mutans, Bacillus cereus, and oxacillin-sensitive and -resistant Staphylococcus aureus. Aerial metabolites 7–10 were inactive against these organisms, but the presence of 7 and 8 prompted investigation of the antiinsectan activity of D. searlsiae metabolites toward the major crop pest Spodoptera frugiperda (fall armyworm). While compounds 1–10 all caused significant reductions in larval growth rates, associated mortality (33–66%) was highest with flavanone 4 and rotenoids 7 and 8. These findings suggest a differential allocation of antimicrobial and antiinsectan plant resources to root and aerial portions of the plant, respectively

    Epididymal mRNA expression profiles for the protein disulfide isomerase gene family: Modulation by development and androgens.

    Get PDF
    The endoplasmic reticulum (ER) is the central hub for protein quality control, where the protein disulfide isomerases (PDIs), encoded by at least 21 genes, play a pivotal role. These multifunctional proteins contribute to disulfide bond formation, proper folding, and protein modifications, and may act as hormone-binding proteins (e.g., steroids), influencing hormone biology. The interplay between ER proteostasis, PDIs, and epididymis-a crucial site for sperm maturation-remains largely understudied. This study characterizes transcriptional signatures of Pdi genes in the epididymis. Transcriptional profiles of selected Pdi genes were assessed in adult Wistar rat tissues, and epididymis under different experimental conditions (developmental stages, surgical castration, and efferent ductules ligation [EDL]). In silico bioinformatic analyses identified expression trends of this gene family in human epididymal segments. P4hb, Pdia3, Pdia5, Pdia6, Erp44, Erp29, and Casq1 transcripts were detected in both reproductive and non-reproductive tissues, while Casq2 exhibited higher abundance in vas deferens, prostate, and heart. Pdilt, highly expressed in testis, and Pdia2, highly expressed in heart, showed minimal mRNA levels in the epididymis. In the mesonephric duct, epididymal embryonic precursor, P4hb, Pdia3, Pdia5, Pdia6, and Erp29 mRNAs were found at gestational day (GD) 17.5. Except for Erp29, which remained stable, these Pdi transcript levels increased from GD17.5 to GD20.5, when epididymal morphogenesis occurs, and were maintained to varying degrees in the epididymis during postnatal development. Surgical castration downregulated P4hb, Pdia3, Pdia5, Pdia6, Pdilt and Erp29 transcripts, an effect reversed by testosterone replacement. Conversely, transcript levels remained unaffected by EDL, except P4hb, which was reduced in caput epididymis. All 21 PDI genes exhibited diverse transcriptional profiles across the human epididymis. The findings lay the foundations to explore Pdi genes in epididymal biology. As a considerable proportion of male infertility cases are idiopathic, targeting hormonal regulation of protein quality control in epididymis represents a route to address male infertility and advance therapeutic interventions in this domain

    Identification of bacteria in drinking and purified water during the monitoring of a typical water purification system

    Get PDF
    BACKGROUND: A typical purification system that provides purified water which meets ionic and organic chemical standards, must be protected from microbial proliferation to minimize cross-contamination for use in cleaning and preparations in pharmaceutical industries and in health environments. METHODOLOGY: Samples of water were taken directly from the public distribution water tank at twelve different stages of a typical purification system were analyzed for the identification of isolated bacteria. Two miniature kits were used: (i) identification system (api 20 NE, Bio-Mérieux) for non-enteric and non-fermenting gram-negative rods; and (ii) identification system (BBL crystal, Becton and Dickson) for enteric and non-fermenting gram-negative rods. The efficiency of the chemical sanitizers used in the stages of the system, over the isolated and identified bacteria in the sampling water, was evaluated by the minimum inhibitory concentration (MIC) method. RESULTS: The 78 isolated colonies were identified as the following bacteria genera: Pseudomonas, Flavobacterium and Acinetobacter. According to the miniature kits used in the identification, there was a prevalence of isolation of P. aeruginosa 32.05%, P. picketti (Ralstonia picketti) 23.08%, P. vesiculares 12.82%,P. diminuta 11.54%, F. aureum 6.42%, P. fluorescens 5.13%, A. lwoffi 2.56%, P. putida 2.56%, P. alcaligenes 1.28%, P. paucimobilis 1.28%, and F. multivorum 1.28%. CONCLUSIONS: We found that research was required for the identification of gram-negative non-fermenting bacteria, which were isolated from drinking water and water purification systems, since Pseudomonas genera represents opportunistic pathogens which disperse and adhere easily to surfaces, forming a biofilm which interferes with the cleaning and disinfection procedures in hospital and industrial environments

    Optimizing land use decision-making to sustain Brazilian agricultural profits, biodiversity and ecosystem services

    Get PDF
    AbstractDesigning landscapes that can meet human needs, while maintaining functioning ecosystems, is essential for long-term sustainability. To achieve this goal, we must better understand the trade-offs and thresholds in the provision of ecosystem services and economic returns. To this end, we integrate spatially explicit economic and biophysical models to jointly optimize agricultural profit (sugarcane production and cattle ranching), biodiversity (bird and mammal species), and freshwater quality (nitrogen, phosphorus, and sediment retention) in the Brazilian Cerrado. We generate efficiency frontiers to evaluate the economic and environmental trade-offs and map efficient combinations of agricultural land and natural habitat under varying service importance. To assess the potential impact of the Brazilian Forest Code (FC), a federal policy that aims to promote biodiversity and ecosystem services on private lands, we compare the frontiers with optimizations that mimic the habitat requirements in the region. We find significant opportunities to improve both economic and environmental outcomes relative to the current landscape. Substantial trade-offs between biodiversity and water quality exist when land use planning targets a single service, but these trade-offs can be minimized through multi-objective planning. We also detect non-linear profit-ecosystem services relationships that result in land use thresholds that coincide with the FC requirements. Further, we demonstrate that landscape-level planning can greatly improve the performance of the FC relative to traditional farm-level planning. These findings suggest that through joint planning for economic and environmental goals at a landscape-scale, Brazil's agricultural sector can expand production and meet regulatory requirements, while maintaining biodiversity and ecosystem service provision

    Osteoblasts and Bone Marrow Mesenchymal Stromal Cells Control Hematopoietic Stem Cell Migration and Proliferation in 3D In Vitro Model

    Get PDF
    BACKGROUND: Migration, proliferation, and differentiation of hematopoietic stem cells (HSCs) are dependent upon a complex three-dimensional (3D) bone marrow microenvironment. Although osteoblasts control the HSC pool, the subendosteal niche is complex and its cellular composition and the role of each cell population in HSC fate have not been established. In vivo models are complex and involve subtle species-specific differences, while bidimensional cultures do not reflect the 3D tissue organization. The aim of this study was to investigate in vitro the role of human bone marrow-derived mesenchymal stromal cells (BMSC) and active osteoblasts in control of migration, lodgment, and proliferation of HSCs. METHODOLOGY/PRINCIPAL FINDINGS: A complex mixed multicellular spheroid in vitro model was developed with human BMSC, undifferentiated or induced for one week into osteoblasts. A clear limit between the two stromal cells was established, and deposition of extracellular matrix proteins fibronectin, collagens I and IV, laminin, and osteopontin was similar to the observed in vivo. Noninduced BMSC cultured as spheroid expressed higher levels of mRNA for the chemokine CXCL12, and the growth factors Wnt5a and Kit ligand. Cord blood and bone marrow CD34(+) cells moved in and out the spheroids, and some lodged at the interface of the two stromal cells. Myeloid colony-forming cells were maintained after seven days of coculture with mixed spheroids, and the frequency of cycling CD34(+) cells was decreased. CONCLUSIONS/SIGNIFICANCE: Undifferentiated and one-week osteo-induced BMSC self-assembled in a 3D spheroid and formed a microenvironment that is informative for hematopoietic progenitor cells, allowing their lodgment and controlling their proliferation

    The GATA1s isoform is normally down-regulated during terminal haematopoietic differentiation and over-expression leads to failure to repress MYB, CCND2 and SKI during erythroid differentiation of K562 cells

    Get PDF
    Background: Although GATA1 is one of the most extensively studied haematopoietic transcription factors little is currently known about the physiological functions of its naturally occurring isoforms GATA1s and GATA1FL in humans—particularly whether the isoforms have distinct roles in different lineages and whether they have non-redundant roles in haematopoietic differentiation. As well as being of general interest to understanding of haematopoiesis, GATA1 isoform biology is important for children with Down syndrome associated acute megakaryoblastic leukaemia (DS-AMKL) where GATA1FL mutations are an essential driver for disease pathogenesis. <p/>Methods: Human primary cells and cell lines were analyzed using GATA1 isoform specific PCR. K562 cells expressing GATA1s or GATA1FL transgenes were used to model the effects of the two isoforms on in vitro haematopoietic differentiation. <p/>Results: We found no evidence for lineage specific use of GATA1 isoforms; however GATA1s transcripts, but not GATA1FL transcripts, are down-regulated during in vitro induction of terminal megakaryocytic and erythroid differentiation in the cell line K562. In addition, transgenic K562-GATA1s and K562-GATA1FL cells have distinct gene expression profiles both in steady state and during terminal erythroid differentiation, with GATA1s expression characterised by lack of repression of MYB, CCND2 and SKI. <p/>Conclusions: These findings support the theory that the GATA1s isoform plays a role in the maintenance of proliferative multipotent megakaryocyte-erythroid precursor cells and must be down-regulated prior to terminal differentiation. In addition our data suggest that SKI may be a potential therapeutic target for the treatment of children with DS-AMKL

    Neudesin is involved in anxiety behavior: structural and neurochemical correlates

    Get PDF
    Neudesin (also known as neuron derived neurotrophic factor, Nenf) is a scarcely studied putative non-canonical neurotrophic factor. In order to understand its function in the brain, we performed an extensive behavioral characterization (motor, emotional, and cognitive dimensions) of neudesin-null mice. The absence of neudesin leads to an anxious-like behavior as assessed in the elevated plus maze (EPM), light/dark box (LDB) and novelty suppressed feeding (NSF) tests, but not in the acoustic startle (AS) test. This anxious phenotype is associated with reduced dopaminergic input and impoverished dendritic arborizations in the dentate gyrus granule neurons of the ventral hippocampus. Interestingly, shorter dendrites are also observed in the bed nucleus of the stria terminalis (BNST) of neudesin-null mice. These findings lead us to suggest that neudesin is a novel relevant player in the maintenance of the anxiety circuitry.This work is supported by a grant from FCT (PTDC/SAU-OSM/104475/2008) under POCTI-COMPETE funds. Ashley Novais, Ana Catarina Ferreira, Ana David-Pereira and Filipa L. Campos are recipients of doctoral fellowships and Fernanda Marques is a recipient of postdoctoral fellowship from Fundacao para a Ciencia e Tecnologia (FCT), Portugal. We acknowledge Merck Serono for providing the neudesin-null mouse strain. We are thankful to Despina Papasava and Vasileios Kafetzopoulos for the assistance given in the HPLC analysis of neurotransmitters
    • …
    corecore