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ABSTRACT  

The Wolffian duct (WD) undergoes morphological changes induced by androgens to form the 

epididymis, which is an organ essential for sperm maturation. Androgen action in WD epithelium 

involves paracrine factors of mesenchymal origin that function by still poorly understood mechanisms. 20!

Here we studied the antimicrobial β-defensin SPAG11C as a new player in duct morphogenesis, 

localized prenatally in the WD mesenchyme. Organotypic culture of rat WDs and tissues from 

Androgen Receptor (AR) knockout mice (ARKO) were used. Our results show that androgen/AR 

signaling differentially regulated SPAG11C expression at mRNA and protein levels in the developing 

WD. WDs incubated with recombinant human SPAG11C were shorter and less coiled as a result of 25!

reduced epithelial cell proliferation, but not increased apoptosis. Our results suggested β-defensin 

SPAG11C as an androgen-target required for WD morphogenesis. This highlights the multifunctional 

repertoire of the β-defensin protein family and their potential contribution to the in utero environment 

that determines male reproductive success. 

 30!

KEYWORDS: Wolffian duct, male infertility, androgen, epididymis, β-defensin, innate immunity 

  



!
3!

1. INTRODUCTION  

Tubular morphogenesis is a fundamental process during the development of the male urogenital 

tract. The morphological changes observed during the embryonic development of the Wolffian duct 35!

(WD), the precursor of the epididymis, transform a straight duct into a three-dimensionally long, coiled 

and regionalized structure. Disruption of the events by which WD elongates and coils in utero may 

result in abnormal epididymal shape and length that later, in adulthood, can compromise sperm 

maturation and therefore male fertility (Murashima et al., 2015b). 

Inhibin beta A (Tomaszewski et al., 2007), growth factors (Gupta, 1996; Kitagaki et al., 2011, 40!

Okazawa et al., 2015) and members of the Wnt pathway (Carrol et al., 2005; Kumar et al., 2016) have 

been shown important regulators of WD morphogenesis. Although cell proliferation is required for 

elongation, cell rearrangements regulated by protein tyrosine kinase 7 is also a major driver of WD 

elongation (Hinton et al., 2011; Xu et al., 2016). During very early development of the WD, androgens 

are essential for the stabilization of the duct in male embryos and later are also needed for the 45!

subsequent differentiation of the WD into the epididymis (Welsh et al., 2007, 2008; Murashima et al., 

2011). Testosterone, but not its metabolite dihydrotestosterone (DHT), plays a dominant role in these 

processes (Tsuji et al., 1991; Imperato-McGinley et al., 1992; Murashima et al., 2015a) through the 

activation of the androgen receptor (AR), a member of the nuclear receptor superfamily. Different 

experimental approaches, including the use of pharmacological tools and genetic models, demonstrated 50!

that androgen action during WD morphogenesis involves dynamic mesenchymal-epithelial interactions 

under the control of AR signaling that drives androgen-dependent mesenchyme-derived molecules that 

act as WD epithelial paracrine regulators (Hannema et al., 2006; Archambeault et al, 2009; Welsh et 

al., 2009; Murashima et al., 2011). However, little is known about the cellular mechanisms involved in 

the complex interplay of modulatory factors driven by androgen signaling during WD morphogenesis.  55!

Recently we reported that the Spag11c gene (sperm-associated antigen 11), a member of the β-



!
4!

defensin family of epithelial antimicrobial peptides, drastically changes its expression pattern as the rat 

epididymis develops from prenatal to postnatal life (Ribeiro et al., 2015). We showed that the Spag11c 

mRNA, detected as early as in the embryonic age (e) e12.5 in the rat WD, transiently increased in its 

abundance at e17.5 and then decreased at e20.5, a period when fetal plasma testosterone levels rise 60!

(Ward et al., 2003; Weisz and Ward, 1980) and the coiling of the epididymal portion of the WD 

develops (Hannema and Hughes, 2007; Welsh et al., 2006, 2007). Curiously, we observed SPAG11C 

localization (mRNA and protein) primarily in mesenchymal cells of the developing WD, in contrast to 

its predominant immunolocalization to the epithelial cells of the postnatal and adult epididymis 

(Ribeiro et al., 2015). As a result from the developmental and surgical castration studies, we also 65!

suggested that androgens contributed to the epididymal cell type- and region-specific modulation of 

SPAG11C in the developing epididymis. A potential role for this β-defensin in tissue morphogenesis 

was suggested due to the ubiquitous distribution of Spag11c mRNA in reproductive and non-

reproductive organs observed in rat fetuses (Ribeiro et al., 2015). Although its physiological relevance 

is still unknown, the characterization of the SPAG11C spatio-temporal expression pattern in the 70!

developing rat epididymis provided the framework for the study and understanding of its function.  

β-defensins are secretory small cysteine-rich cationic proteins with an alpha-helix and three 

beta-sheets primarily associated in adult animals with host defense through potent antimicrobial 

activity and immunomodulatory actions (Selsted et al., 1985; Taylor et al., 2008). In mammals they are 

abundantly expressed in the adult epididymal epithelial cells from where they are secreted. Their 75!

association with spermatozoa in the epididymal lumen and ejaculate have also implicated them in the 

regulation of sperm function and fertility (Li et al., 2001; Zhou et al., 2004; Avellar et al., 2007; 

Tollner et al., 2011; Ribeiro et al. 2012; Semple and Dorin, 2012). Indeed, a marked in vivo 

consequence of a β-defensin cluster deletion in mice was profound male sterility due to defects in 

sperm maturation (Zhou et al., 2013).  80!
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In view of our discovery of the spatio-temporal expression of the β-defensin SPAG11C during 

WD morphogenesis, we tested the hypothesis of SPAG11C as a novel androgen-target player during 

the regulation of WD morphogenesis. In the present work, we took advantage of an ex vivo 

organotypic culture of the rat WD as well as tissues from AR knockout mice (ARKO) to isolate the 

role of testosterone/AR signaling in the regulation of the Spag11c gene expression (mRNA and 85!

immunolocalization) during WD differentiation. We have also tested the impact of the recombinant 

full-length human SPAG11C (hSPAG11C) on the ex vivo cultured WDs. The results contribute to a 

better understanding of the physiological relevance of the β-defensin SPAG11C during WD 

morphogenesis and its potential translation into the clinical setting for its suitability as a key biomarker 

of developmental events or target for the diagnosis or treatment of diseases in the developing 90!

epididymis.  
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2. MATERIAL AND METHODS 

2.1. Animals and tissue collection 

Wistar rats were bred and housed in the Animal Facility at Instituto Nacional de 95!

Farmacologia/Universidade Federal de São Paulo – Escola Paulista de Medicina (UNIFESP-EPM) 

under controlled light (12 h light:dark cycle) and temperature (22–24 °C), with free access to food and 

water. To establish timed matings, a single male rat was housed overnight with two female rats. The 

presence of spermatozoa in vaginal smears the following morning was considered evidence of mating 

and the time defined as embryonic day e0.5. Dams were euthanized by inhalation of an overdose of 100!

isoflurane (Cristália, Itapira, SP, Brazil) followed by bilateral pneumothorax. Fetuses were recovered, 

anesthetized in ice-cold DPBS (Thermo Fisher Scientific, Grand Island, NY, USA) and then 

decapitated. Fetal tissues were collected at e17.5 and e20.5. All procedures were conducted in 

compliance with the guidelines for the care and use of laboratory animal and were approved by the 

Research Ethical Committee from UNIFESP-EPM (CEUA#1776201213).  105!

 Slides containing Bouin’s-fixed paraffin-embedded tissue sections from WDs with testes 

attached from Androgen Receptor (AR) knockout (ARKO) and correspondent wild type (WT) mice 

were made available by the University of Edinburgh (UK). ARKO mice were generated by mating 

female mice heterozygous for the X-linked hypoxanthine phosphoribosyltransferase-Cre transgene with 

male ARflox mice. WD/testis were collected from fetuses at e16.5 and processed for paraffin 110!

embedding as previously described (De Gendt et al., 2004; Welsh et al., 2009). E16.5 was chosen 

because it coincides with both the initial duct coiling in WT mice and the beginning of the duct 

regression in ARKO mice (Welsh et al., 2009). 

 

2.2. Determination of plasma testosterone concentration  115!

Blood samples, collected following fetal decapitation, were transferred to EDTA-treated tubes 
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and centrifuged (1000 × g, 10 min, 4oC). Pooled plasma samples (2-3 fetuses/sample) were then 

aliquoted and stored at −20oC until use. Plasma testosterone concentration was measured via enzyme-

linked immunosorbent assays (IBL International GMBH, Hamburg, Germany) according to 

manufacturer’s instructions. Plates were read in a microplate spectrophotometer (Molecular Devices 120!

VERSAmax Tunable Microplate Reader, Sunnyvale, CA, USA) at 450 nm. The assay detection limit 

was 70 pg/ml and the detection range was 0.20–16.0 ng/ml. 

 

2.3. Production of purified recombinant His-tagged human SPAG11C (hSPAG11C)  

The DNA coding region of human SPAG11C (minus the secretory signal peptide; aminoacids 125!

M25-Y113; NCBI accession number NM_058203.2) was amplified by PCR. The PCR product was 

cloned into the expression vector pET-28a (Millipore, Darmstadt, Germany) in fusion with N-terminal 

6xHis-tag and then expressed in BL21-DE3-RIL Escherichia coli cells after IPTG-induction (Thermo 

Fisher Scientific, Bleiswijk, Netherlands). The recombinant protein was purified by affinity 

chromatography on an Ni-NTA column (Qiagen, Valencia, CA, USA) followed by further HPLC 130!

purification on a Sep-Pack C18 cartridge (Waters, USA). Protein quality was preliminary confirmed by 

4-12% SDS-PAGE analysis (Coomassie gel staining and Western Blot using antibodies anti-His and 

anti-SPAG11C). Then, the molecular weight of purified protein was determined by LC/ESI-MS mass 

spectrometry analysis and matched the theoretical mass of the hSPAG11C (13.9 kDa). Purified 

recombinant hSPAG11C was vacuum-dried. Lyophilized samples were aliquoted and kept at −80oC 135!

until use. 

 

2.4. WD organotypic culture 

The organotypic culture of WDs, that mimics the in vivo androgen-dependent WD 

morphological differentiation, was performed as described by Tsuji et al. (1991) with modifications. In 140!
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brief, the whole urogenital tract was dissected from male rat fetuses at e17.5 in ice-cold DPBS (Thermo 

Fisher Scientific) under a Stemi 2000C stereomicroscope (Carl Zeiss MicroImaging GmbH, Jena, 

Germany). Isolated WDs without testis, but including the prospective efferent ducts and the vas 

deferens, were placed on a 30 mm Millicell hydrophilic polytetrafluoroethylene inserts (Merck 

Millipore, Tullagreen, Carrigtwohill, Ireland). The inserts, each containing two-three WDs, were then 145!

transferred to individual wells of 6-well plates floating on 1.5 ml of serum-free medium composed of 

DMEM/F12 (Thermo Fisher Scientific, Grand Island, NY, USA), 1% insulin−transferrin−selenium 

(Thermo Fisher Scientific) and 50 µg/mL ampicillin (Sigma-Aldrich, Bornem, Belgium) and 

supplemented with testosterone (0.1-10 nM; Sigma-Aldrich, St. Louis, MO, USA). Cultures were kept 

in a humidified incubator at 37°C with a 5% CO2/95% air for up to 96 h. Changes of fresh medium 150!

were performed every 24 h, unless otherwise mentioned. Gross morphology of cultured WDs was 

inspected using a Nikon Ti-U inverted microscope (Nikon Instruments Inc, Melville, NY, USA). 

Whole-mount images were acquired immediately after WDs were placed into culture (0 h) and then 

daily until culture was terminated. At the end of the culture, WDs were processed for reverse 

transcription followed by real-time quantitative PCR studies (RT-qPCR) or immunofluorescence 155!

assays.  

 

2.5. Androgen-dependency studies using WD organotypic culture 

Isolated e17.5 WDs were cultured for up to 96 h with fresh medium supplemented with 

increasing concentrations of testosterone (0.1-10 nM). Ducts were also cultured in the absence or 160!

presence of flutamide (10 µM; Sigma-Aldrich, St. Louis, MO, USA), a nonsteroidal AR competitive 

antagonist (Ki ≅ 3.40 µM; Simard et al., 1986), as well as in the presence of testosterone (10 nM) and 

flutamide (10 µM). An equivalent volume of ethanol (diluent of testosterone) was added to the culture 

medium and used as a control. Gross morphology was inspected as described before. At specific time-
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points, tissues were collected and used for RT-qPCR and immunofluorescence studies. 165!

2.6. Evaluation of hSPAG11C-induced effects on morphogenesis of cultured WDs 

Isolated e17.5 WDs were cultured for up to 96 h in medium supplemented with purified 

recombinant hSPAG11C (80 nM) or equivalent molar concentration of bovine serum albumin (BSA) 

used as unspecific protein control. This hSPAG11C working concentration was selected based on 

preliminary mammalian cell culture experiments in which the concentration range of 0.8–800 nM of 170!

this recombinant protein was not toxic to the cells (data not shown). The specificity of the hSPAG11C-

induced effects was evaluated by washout experiments, in which hSPAG11C was removed after 48 h 

of its incubation and WDs then allowed to develop for 48 h more in fresh medium. Gross morphology 

was inspected as previously described above. Immunofluorescence assays using anti-His antibody were 

performed to check the ability of purified recombinant hSPAG11C to be taken up by the cultured WD 175!

cells. 

 

2.7. Measurement of WD elongation and coiling 

WD morphological differentiation ex vivo was quantified by measuring the length and the 

number of bends along the portion of the duct that will become the future epididymis, i.e., from the end 180!

of the merging efferent ducts to the intersection between cauda epididymis and vas deferens wherein a 

symmetric U-shape is found. Quantifications were performed on whole-mount images using the 

ImageJ software (Schindelin et al., 2012). Firstly, when necessary, two images taken at low 

magnification were stitched together using the Pairwise Stitching plugin (Preibisch et al., 2009). The 

digital images were then spatially calibrated and a freehand line was drawn along the duct and the 185!

length distance was measured (mm). WD coiling was quantified by measuring the number of bends 

along the duct. Two intersecting lines were drawn outlining WD lumen and then the central angle of 

each curve was measured using the angle tool. One bend was defined by a central angle narrow than 
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60o as previously described (Xu et al., 2016).  

2.8. Real-time quantitative PCR (qPCR) 190!

Total RNA was extracted from frozen isolated WDs by using Pico Pure RNA isolation kit 

(Thermo Fisher Scientific, Foster City, CA, USA). Total RNA quantity and quality (absorbance ratios 

A260:A280 and A260:A230 > 1.8) were assessed with a NanoVue spectrophotometer (GE Healthcare 

Life Sciences, Fairfield, CT, USA) and 1 µg was used in reverse transcriptase reactions containing 

oligo(dT) following the manufacture’s instructions (Thermoscript RT-PCR system; Thermo Fisher 195!

Scientific, CA, USA).  

cDNA samples were assayed in qPCR performed with SYBR Green Master Kit (Kapa 

Biosystems, Cape Town, South Africa) in an ABI PRISM 7500 Sequence Detection System (Applied 

Biosystems, Foster City, CA, USA) using primers targeting rat Spag11c and Acta2 genes, as previously 

described (Ribeiro et al., 2015). The mRNA levels of Acta2, which is a specific marker for peritubular 200!

smooth muscle cells known to be up-regulated during WD development (Hannema et al., 2006; Welsh 

et al., 2006; Ribeiro et al., 2015), was used as a positive control. At the end of each reaction, a melting 

curve was generated and analyzed to confirm the specificity of the amplified PCR product. The average 

cycle threshold (Ct) was automatically determined using the 7500 Applied Biosystems software 

(version 2.0.5). Relative quantification of target genes was calculated using the method 2−ΔΔCt (Livak 205!

and Schmittgen, 2001). Rpl19 (Ribosomal protein L19) housekeeping gene, which was stably 

expressed among samples, was used for the internal standardization of the qPCR results (Rpl19 Ct 

variation values: standard deviation ≤ 0.45 and coefficient of variation ≤ 2.30%, n=21-25 samples). 

 

2.9. Immunofluorescence 210!

Isolated WDs were fixed in 4% paraformaldehyde in PBS for 2 h at 4°C, dehydrated through a 

sucrose gradient (10-30%) and then embedded using freezing media as previously described (Liu et al., 
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2012). Immunofluorescence localization of proteins using cryosections (8-10 µm) was performed as 

previously described (Queiróz et al., 2008). In brief, tissue sections were washed in PBS and incubated 

for 1 h at room temperature with blocking solution composed of PBS 0.1 M (pH 7.4), 3% albumin 215!

(w/v) and 0.01% saponin, (w/v). Sections were then incubated for 16 h at 4°C in blocking solution 

containing the following primary antibodies, all polyclonal and produced in rabbit: antibody anti-

SPAG11C (Imuny, Campinas, SP, Brazil; cat. IPVS-1023; antigen sequence: METQVGYCSKKKEA; 

1:200 v/v working dilution based on Ribeiro et al., 2015), antibody anti-alpha smooth muscle actin 

(Abcam, cat. ab5694, 1:50 v/v working dilution), antibody anti-androgen receptor (Santa Cruz, cat. sc-220!

816, 1:200 v/v working dilution), antibody anti-phospho-histone-H3 (Millipore, cat. 06-570, 1:200 v/v 

working dilution) and antibody anti-cleaved caspase-3 (Cell Signaling, cat. sc- 9661S, 1:200 v/v 

working dilution). Monoclonal anti-polyhistidine antibody produced in mice was also used (Sigma, cat. 

H1029, 1:3000 v/v working dilution). After washes in PBS, sections were incubated for 1 h at room 

temperature in blocking solution with either donkey anti-rabbit or goat anti-mouse secondary antibody 225!

conjugated to Alexa Fluor 594 (Molecular Probes, 1:200 v/v working dilution). DAPI (4,6-diamidino-

2-phenylindole) was used for nuclear identification. Slides were coverslipped with ProLong Gold 

(Molecular Probes). Negative controls were performed by either replacing the primary antibody with 

nonimmune rabbit serum or by pre-adsorption of the primary antibody with 10-fold molar excess of its 

corresponding antigen peptide. Images were obtained with identical settings on the Leica TCS SP8 230!

inverted confocal microscope (Leica Microsystems, Wetzlar, Germany) unless otherwise specified. 

Representative images of each group were selected.  

 

2.10. Measurement of cell proliferation and apoptosis 

Immunofluorescence studies for phospho-histone H3 (pH3, mitotic cell immunomarker) and 235!

cleaved caspase-3 (apoptotic cell immunomarker) were performed in cryosections of WDs cultured in 



!
12!

absence and presence of recombinant hSPAG11C. Measurement of the number of epithelial 

proliferative cells was based on the procedure described by Welsh et al. (2006).  The whole epididymal 

portion of each WD was visualized in one microscope field using a 20x objective (Nikon E800; Nikon, 

Melville, NY, USA). The digital images were captured using a Retiga 2000R CCD camera (QImaging, 240!

Surrey, Canada) and then imported into Image J software, where the number of  pH3-positive WD 

epithelial cells were manually counted using the Cell Counter Image J plugin. The total number of 

pH3-positive cells was then normalized against the total surface of the epithelium length/microscope 

field that was also measured using ImageJ software. This parameter, which corresponded to the sum of 

the perimeter of multiple surfaces of a single tubule in each tissue cryosection analyzed, was used as a 245!

correction factor for differences per slide in the plane of the tissue sectioning and/or effect of culture 

treatment. The number of proliferating cells was expressed in terms of pH3-positive cells/mm of WD 

epithelium. At least 6-7 microscope fields of WDs from a total of 4 fetuses per experimental group 

were evaluated. To assess the precision of the cell counting, all sections were counted independently by 

at least two trained observers.  250!

 

2.11. Statistical analysis 

Values were expressed as mean ± SEM. For two group comparisons, two-tailed Student’s t-test 

was applied. For multiple group comparisons, one-way ANOVA was performed. GraphPad Prism 

software version 5 (Graph Pad Software) was used for all statistical analysis. P < 0.05 was considered 255!

statistically significant. 

  



!
13!

3. RESULTS 

3.1. Influence of androgens on Spag11c mRNA levels in WD organotypic culture 

First, we independently confirmed that the three-fold decrease in the Spag11c mRNA levels in 260!

the developing WDs between e17.5 (uncoiled duct) and e20.5 (coiled duct) observed in our previous 

study (Ribeiro et al., 2015) occurred in parallel with a significant increase in the plasma testosterone 

concentrations in these male fetuses  (4.63 ± 0.45 nM at e17.5 versus 7.73 ± 0.55 nM at e20.5; mean ± 

SEM; n=7 pools/age; t test, *p<0.05). 

Next we used the ex vivo WD organotypic culture to check if the in vivo Spag11c mRNA 265!

changes in the developing WDs cited above could be directly attributed to the effects of 

testosterone/AR signaling on this gene expression in the duct. Temporal morphological changes were 

observed when e17.5 WDs were cultured for up to 72 h in the absence (Fig. 1A-C, Fig. 2A-D) or 

presence of increasing concentrations of testosterone (Fig. 1 D-L). As expected, WD elongation and 

coiling were prevented when ducts were exposure to both testosterone and flutamide (Fig. 2 M-P). 270!

A significant reduction in the Spag11c transcript levels was observed in WDs cultured for 72 h 

in the presence of 10 nM testosterone (Fig. 1M). The Spag11c mRNA downregulation was observed as 

early as 24 h after culture, when no dramatic gross morphological changes such as observed after 72 h 

of incubation, had taken place (Fig. 2). This observation suggests that mRNA changes were not simply 

a consequence of changes in cellular type composition during WD development. Furthermore, the 275!

testosterone-induced down-regulation of Spag11c mRNA levels was, at least partially, reduced by co-

incubation of testosterone (10 nM) with flutamide (10 µM) (Fig. 2Q), suggesting the androgen 

responsiveness of these parameters. Conversely, in spite of the expected testosterone-induced increase 

in Acta2 mRNA levels and its abrogation by flutamide in WDs cultured for 72 h (Fig. 1M, Fig. 2Q), a 

downregulation of Acta2 transcript levels was observed when ducts were exposed to testosterone for 24 280!

h (Fig. 2Q).  



!
14!

3.2. Influence of androgens on Spag11c immunolocalization in WD organotypic culture 

Immunoflurescence studies confirmed the predominant localization of SPAG11C in the 

mesenchymal cells from isolated WDs at ages e17.5 and e20.5 (Fig. 3A-C). This expression pattern 

was also observed when e17.5 WDs were cultured ex vivo with testosterone (10 nM) for either 48 h 285!

(Fig. 3H) or 72 h (Fig. 3J). Under testosterone-deprived culture condition, SPAG11C immunoreactivity 

in stromal cells was still present after 48 h (Fig. 3G), while it decreased significantly with progression 

of the culture to 72 h (Fig. 3I). Ducts kept in culture after 72 h with both testosterone (10 nM) and 

flutamide (10 µM) also presented a significant decrease in SPAG11C immunofluorescence  (Fig. S1), 

confirming the androgen effects on SPAG11C expression at the protein level.  290!

ACTA2 immunoreactivity was observed in stromal cells directly surrounding the WD from 

e17.5 and e20.5 male fetuses (Fig. 3D-F). The immunodistribution pattern of this smooth muscle 

specific marker, however, was not significantly influenced by the androgenic conditions of WDs in 

culture (Fig. 3K-N).  

 295!

3.3. SPAG11C immunolocalization in the WD from ARKO mice 

To gain insight into the in vivo regulation of SPAG11C in the developing WD by  

testosterone/AR signaling, we next performed immunofluorescence studies in tissue sections from the 

ARKO fetuses mice. The SPAG11C distribution pattern observed in WD from WT mice (Figs. 4A-G) 

was similar to that previously described in age-matched Wistar rats (Ribeiro et al., 2015). SPAG11C 300!

immunoreactivity in control WDs was restricted to the mesenchymal compartment, with the strongest 

fluorescent signal being detected in stromal cells that do not directly surround the duct epithelium 

(Figs. 4A-G). The lack of AR signaling resulted in changes in SPAG11C immunoreactivity pattern 

with higher fluorescent intensity observed in periductal stromal cells from ARKO WDs when 

compared to the WT tissues (Figs. 4H-N). In addition, ACTA2 immunoreactivity was maintained in 305!
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the WD stromal cells of ARKO tissues (Figs. 40-Q). 

 

3.4. Effects of recombinant hSPAG11C on WD morphogenesis ex vivo 

To determine a functional response of the β-defensin SPAG11C on WD morphogenesis, we 

evaluated the effects of the recombinant protein hSPAG11C on the WD morphogenesis ex vivo. 310!

hSPAG11C-treated WDs were shorter in length and less coiled than the control ducts incubated with 

BSA (Fig. 5A-F). WD coiling was partially rescued following washout of hSPAG11C and change to 

normal culture medium, showing the specificity of the recombinant protein-induced effects (Fig. 5G-I). 

Both the duct length and the bend numbers were reduced in WDs incubated with hSPAG11C (Fig. 5J-

K). These same ducts presented approximately two-fold reduction in the number of proliferating 315!

epithelial cells (Fig. 5L-N). In addition, only rare apoptotic cells were detected in both control and 

hSPAG11C-treated WDs (Fig. S2). Anti-His immunofluorescence was detected in both epithelial and 

mesenchymal cells of hSPAG11C-treated WDs, demonstrating their ability to take up this recombinant 

protein (Figs. 5O-Q).  

  320!
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4. DISCUSSION  

The WD undergoes morphological changes over time to originate an epididymis of proper 

shape and length, which is critical to providing a suitable environment for sperm maturation. This 

highly coordinated morphogenic program is primarily orchestrated by androgens and depends upon a 

crosstalk between WD mesenchymal and epithelial cells. The complex signaling network involving 325!

molecules of mesenchymal origin which instruct epithelial growth under control of androgen action, 

however, is still poorly understood (Murashima et al., 2015b). The localization of the β-defensin 

SPAG11C in WD mesenchymal cells and its regulation during epididymal development (Ribeiro et al., 

2015) raised the possibility that this particular protein is required for WD morphogenesis. Herein, we 

demonstrated that AR signaling drives SPAG11C expression during WD morphogenesis. Furthermore, 330!

we showed that recombinant hSPAG11C protein interfered with WD morphogenesis ex vivo by 

regulating epithelial cell proliferation. This implied a role for SPAG11C in the androgen-induced 

morphological differentiation of WD. 

Our data using the rat WD organotypic culture show Spag11c gene as an androgen-dependent 

target that is differentially regulated at mRNA and protein levels during the duct development. 335!

Discrepancy in the regulation of Acta2 expression at mRNA and protein level by androgens was 

likewise observed. In vitro, testosterone decreased Spag11c mRNA levels while maintaining 

SPAG11C immunoreactivity in WD mesenchymal cells. Possible explanations for the apparent lack of 

correlation between mRNA and protein levels can be attributed to androgen-regulated post-

transcriptional mechanisms that can influence Spag11c mRNA half-life and its polysome-bound 340!

fraction, as well as protein half-life and translation rate. The clarification of these regulatory 

mechanisms will need further confirmation.  

The relevance of androgen/AR signaling in the regulation of SPAG11C in the developing WD 

was further tested in a whole-system model, the ARKO mice, where AR signaling is impaired. In these 
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mice, changes in SPAG11C cellular distribution in the stromal compartment were observed as early as 345!

e16.5. Based on WD coiling temporal changes, this e16.5 age-point in mice corresponds to e19.5 in 

rats (Welsh et al., 2009; Hinton et al., 2011), which in turn would be comparable to e17.5 rat WDs 

cultured for 48 h (i.e., 17.5 + 2 days) in the presence of testosterone.  

In light of the time-dependent reduction of SPAG11C immunoreactivity observed in e17.5 rat 

WDs cultured under androgen-deprived conditions, we could predict that SPAG11C 350!

immunofluorescence in ARKO mice would not be maintained at age points later than e16.5. Thus, it 

will be instructive to expand the analysis of SPAG11C cellular distribution in tissues from ARKO mice 

at age points later than e16.5. Furthermore, the ablation of androgen signaling can disrupt the paracrine 

signaling between mesenchyme and epithelium (Welsh et al., 2006, 2007) and it is suggested that 

changes in SPAG11C immunolocalization, as a consequence, contributes to duct regression. 355!

Conversely, no change in ACTA2 immunodistribution pattern was observed either when rat WDs were 

cultured in the absence of testosterone or in ARKO tissues. These results agree with the finding that the 

initiation of ACTA2 protein expression, but not its maintenance, in testicular peritubular cells is 

dependent on androgens (Schlatt et al., 1993).  

The androgen responsiveness of the Spag11c gene at the transcriptional level is consistent with 360!

the identification of putative binding sites for AR in the proximal 1,000 bp of the human SPAG11B 

gene promoter region that drives transcription of the SPAG11C mRNA splicing variant. Four 5’-

TGTTCT-3’ (or 5’-AGAACA-3’) sites that correspond to one-half of the near-palindromic consensus 

sequence of the androgen response element (ARE) were found (Fröhlich et al., 2001). Furthermore, 

studies using in vivo models have extensively shown androgens as important regulators of β-defensin 365!

expression in postnatal and adult epididymis (Hamil et al., 2000; Ibrahim et al., 2001; Liu et al., 2001; 

Palladino et al., 2003; Avellar et al 2004, 2007; Jalkanen et al, 2005; Radhakrishnan et al, 2005; 

Yenugu et al., 2006ab; Zhao et al., 2011; Pujianto et al., 2013; Ribeiro et al., 2015). The understanding 
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of the molecular mechanisms by which Spag11c and other β-defensin genes are regulated by androgens 

remains to be further explored. 370!

It is worth noting that Spag11c mRNA was detected in the urogenital rudiment at e12.5 

(Ribeiro et al., 2016), thus prior to testosterone synthesis and AR expression in rat fetuses. Moreover, 

Spag11c detection in the paramesonephric duct of female embryos demonstrates that Spag11c gene 

expression is not male-specific (Fig. S3). Following the developmental expression pattern of many 

other morphogens such as Inhba (Tomaszewski et al., 2007), the results suggest the co-participation of 375!

yet-to-be-discovered androgen-independent components in the regulation of SPAG11C in the 

developing WD as well. 

 To gain insights into the SPAG11C functionality in WD morphogenesis, we analyzed the 

developmental pattern of WDs incubated with purified recombinant protein hSPAG11C. hSPAG11C 

incubation reduced duct elongation and coiling as a result of significant  decrease in epithelial cell 380!

proliferation, and not changes in apoptosis. This effect on the epithelium, in addition to the secretory 

nature of β-defensins, as well as the SPAG11C androgen-dependence and predominant localization in 

mesenchymal cells provide evidence to support the hypothesis that SPAG11C acts as an androgen 

target of mesenchymal origin regulating duct morphogenesis. Therefore, our findings provide evidence 

that this β-defensin is a suppressor signal that opposes the ductal epithelial cell proliferation induced by 385!

testosterone. The dynamic modulation of SPAG11C expression at mRNA and protein levels by 

testosterone would thus contribute to the delicate balance between anti- and pro-proliferative signals 

that allow proper WD elongation and coiling.  

 β-defensins, are multifunctional proteins that can affect diverse cellular processes (i.e., cell 

proliferation, differentiation and migration) and are known to display opposing functions depending 390!

upon their concentrations and targeted cell types (for review, see Semple and Dorin, 2012). Likewise 

SPAG11C, several human β-defensins (e.g. hBD1, hBD2, hBD3, and hBD4) act as proliferation-
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repressor signals at nanomolar concentration (Pingel et al., 2008; Winter et al., 2011; Zhuravel et al., 

2011; Gerashchenko et al., 2014). Cell cycle arrest at G1 phase (Zhuravel et al., 2011) and inhibition of 

ERK phosphorylation (Pingel et al., 2008) are also proposed mechanisms by which β-defensins can 395!

suppress cell proliferation.  

We recently reported that in contrast to Spag11c mRNA detection in WDs at both e17.5 and 

e20.5, transcripts for Defb1, Defb2 and Defb22 were primarily observed in e20.5 WDs, while Defb12 

and Spag11e mRNAs were not readily detected at these two age points (Ribeiro et al., 2016). This 

unique expression pattern of Spag11c mRNA in WD in comparison to other β-defensins suggests 400!

functional specialization of the members of this protein family during WD morphogenesis. Moreover, 

β-defensins may differentially respond to developmental cues, which further suggests diverse 

mechanisms by which their expression is regulated. Our future experiments will be directed towards 

examining the physiological role(s) and mechanism(s) of action of SPAG11C in vivo. 

In summary, our data suggest that androgen/AR signaling modulates SPAG11C expression and 405!

regulates WD epithelial proliferation. These findings highlight the putative relevance of homeostatic 

patterns of in utero expression of SPAG11C and presumably of other β-defensins for proper 

masculinization of the male reproductive tract.  

  



!
20!

5. AUTHOR CONTRIBUTIONS 410!

CMR, BTH and MCWA designed research, analyzed data and wrote the paper. CMR, LGAF, 

DST performed research and analyzed data. LBS contributed materials and help with research design 

and analyses.  

 

6. ACKNOWLEDGMENTS 415!

We thank Juliana S Luz, Leandro B Agati, Antonio Miranda (UNIFESP-EPM, Brazil) for 

providing purified recombinant human SPAG11C protein. We thank Erick JR Silva (UNESP, 

Botucatu-SP, Brazil) for his support and helpful comments and Xu Bingfang for helping in 

quantification of Wolffian duct development (UVA, USA). We also thank Gui Mi Ko, Jacilene 

Barbosa, Caroline Romera and Elizabeth Kanashiro for technical assistance. This work was supported 420!

by Conselho Nacional de Desenvolvimento Científico e Tecnológico (Science Without Borders/PVE 

#401932/2013-3, PDJ #150066/2016-3 to CMR; Universal #101955/2015-4; Produtividade em 

Pesquisa #308349/2010-5 to MCWA), São Paulo Research Foundation (FAPESP, #2010/52711-0 and 

#2009/14649-3), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES to DST) and 

National Institutes of Health Eunice Kennedy Shriver NICHD (NIH, #R01-HD069654, BTH). LBS is 425!

supported by UK MRC funding (MR/N002970/1).  

 

  



!
21!

7. REFERENCES  

Archambeault DR, Tomaszewski J, Joseph A, Hinton BT, Yao HH. Epithelial-mesenchymal crosstalk 430!

in Wolffian duct and fetal testis cord development. Genesis, 47:40-8, 2009. 

Avellar MC, Honda L, Hamil KG, Yenugu S, Grossman G, Petrusz P, French FS, Hall SH. Differential 

expression and antibacterial activity of epididymis protein 2 isoforms in the male reproductive tract 

of human and rhesus monkey (Macaca mulatta). Biol Reprod, v.71, p.1453-60, 2004. 

Avellar MC, Honda L, Hamil KG, Radhakrishnan Y, Yenugu S, Grossman G, Petrusz P, French FS, 435!

Hall SH. Novel aspects of the sperm-associated antigen 11 (SPAG11) gene organization and 

expression in cattle (Bos taurus). Biol Reprod, v. 76, n. 6, p.1103-16, 2007. 

Björkgren I, Alvarez L, Blank N, Balbach M, Turunen H, Laajala TD, Toivanen J, Krutskikh A, 

Wahlberg N, Huhtaniemi I, Poutanen M, Wachten D, Sipilä P. Targeted inactivation of the mouse 

epididymal beta-defensin 41 alters sperm flagellar beat pattern and zona pellucida binding. Mol Cell 440!

Endocrinol, v.427, p.143-54, 2016. 

Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP. Wnt9b plays a central role in the 

regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian 

urogenital system. Dev Cell, v.9, n.2, p.283-92, 2005. 

De Gendt K, Swinnen JV, Saunders PT, Schoonjans L, Dewerchin M, Devos A, Tan K, Atanassova N, 445!

Claessens F, Le ́cureuil C, Heyns W, Carmeliet P, Guillou F, Sharpe RM, Verhoeven G. A Sertoli 

cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proc Natl 

Acad Sci USA, v.101, p.1327–32, 2004. 

Diao R, Fok KL, Chen H, Yu MK, Duan Y, Chung CM, Li Z, Wu H, Li Z, Zhang H, Ji Z, Zhen W, Ng 

CF, Gui Y, Cai Z, Chan HC. Deficient human β-defensin 1 underlies male infertility associated with 450!

poor sperm motility and genital tract infection. Sci  Transl Med, v. 6: 249ra108, 2014. 

Dorin JR, Barratt CL. Importance of β-defensins in sperm function. Mol Hum Reprod, v. 20, n. 9, 



!
22!

p.821-6, 2014. 

Fröhlich O, Po C, Young LG.  Organization of the human gene encoding the epididymis-specific EP2 

protein variants and its relationship to defensin genes. Biol Reprod, v.64, p.1072-79, 2001. 455!

Gerashchenko O, Zhuravel E, Skachkova O, Khranovska N, Pushkarev V, Pogrebnoy P, Soldatkina M. 

Involvement of human beta-defensin-2 in regulation of malignant potential of cultured human 

melanoma cells. Exp Oncol, v.36, n.1, p.17-23, 2014. 

Gupta C. The role of epidermal growth factor receptor (EGFR) in male reproductive tract 

differentiation: stimulation of EGFR expression and inhibition of Wolffian duct differentiation with 460!

anti-EGFR antibody. Endocrinology, v.137, n.3, p.905-10, 1996. 

Hamil KG, Sivashanmugam P, Richardson RT, Grossman G, Ruben SM, Mohler JL, Petrusz P, O'Rand 

MG, French FS, Hall S.H. HE2beta and HE2gamma, new members of an epididymis-specific family 

of androgen-regulated proteins in the human. Endocrinology, v.141, n. 3, p. 1245-53, 2000. 

Hannema SE, Hughes IA. Regulation of Wolffian duct development. Horm Res, v.67, n.3, p. 142-51, 465!

2007. 

Hannema SE, Print CG, Charnock-Jones DS, Coleman N, Hughes IA. Changes in gene expression 

during Wolffian duct development. Horm Res, v.65, n.4, p.200-9, 2006.  

Hinton BT, Galdamez MM, Sutherland A, Bomgardner D, Xu B, Abdel-Fattah R, Yang, L. How do 

you get six meters of epididymis inside a human scrotum? J Androl, v.32, n.6, p.558-64, 2011. 470!

Ibrahim NM, Young LG, Fröhlich O. Epididymal specificity and androgen Regulation of rat EP2. Biol 

Reprod, v.65, n.2, p.575-80, 2001. 

Imperato-McGinley J, Sanchez RS, Spencer JR, Yee B, Vaughan ED. Comparison of the effects of the 

5 alpha-reductase inhibitor finasteride and the antiandrogen flutamide on prostate and genital 

differentiation: dose-response studies. Endocrinology, v.131, n.3, p.1149-56, 1992. 475!

Jalkanen J, Huhtaniemi I, Poutanen M. Discovery and characterization of new epididymis-specific 



!
23!

beta-defensins in mice. Biochim Biophys Acta, v.1730, n.1, p.22-30, 2005. 

Kitagaki J, Ueda Y, Chi X, Sharma N, Elder CM, Truffer E, Costantini F, Lewandoski M, Perantoni 

AO. FGF8 is essential for formation of the ductal system in the male reproductive tract. 

Development, v.138, n.24, p.5369-78, 2011.  480!

Kumar M, Syed SM, Taketo MM, Tanwar PS. Epithelial Wnt/β-catenin signalling is essential for 

epididymal coiling. Dev Biol, v.412, n.2, p.234-49, 2016. 

Li P, Chan HC, He B, So SC, Chung YW, Shang Q, Zhang YD, Zhang YL. An antimicrobial peptide 

gene found in the male reproductive system of rats. Science, v.291, n.5509, p.1783-5, 2001. 

Liu C, Paczkowski M, Othman M, Yao HH. Investigating the origins of somatic cell populations in the 485!

perinatal mouse ovaries using genetic lineage tracing and immunohistochemistry. Methods Mol 

Biol, v.825, p.211-21, 2012. 

Liu Q, Hamil KG, Sivashanmugam P, Grossman G, Soundararajan R, Rao AJ, Richardson RT, Zhang 

YL, O'Rand MG, Petrusz P, French FS, Hall SH. Primate epididymis-specific proteins: 

characterization of ESC42, a novel protein containing a trefoil-like motif in monkey and human. 490!

Endocrinology, v.142, n.10, p.4529-39, 2001. 

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR 

and the 2(-Delta Delta C(T)) Method. Methods, v.25, n.4, p.402-8, 2001.  

Murashima A, Miyagawa S, Ogino Y, Nishida-Fukuda H, Araki K, Matsumoto T, Kaneko T, 

Yoshinaga K, Yamamura K, Kurita T, Kato S, Moon AM, Yamada G. Essential roles of androgen 495!

signaling in Wolffian duct stabilization and epididymal cell differentiation. Endocrinology, v.152, 

n.4, p.1640-51, 2011. 

Murashima A, Kishigami S, Thomson A, Yamada G. Androgens and mammalian male reproductive 

tract development. Biochim Biophys Acta, v.1849, n.2, p.163-70, 2015a. 

Murashima A, Xu B, Hinton BT. Understanding normal and abnormal development of the 500!



!
24!

Wolffian/epididymal duct by using transgenic mice. Asian J Androl, v.17, n.5, p.749-55, 2015b. 

Okazawa M, Murashima A, Harada M, Nakagata N, Noguchi M, Morimoto M, Kimura T, Ornitz DM, 

Yamada G. Region-specific regulation of cell proliferation by FGF receptor signaling during the 

Wolffian duct development. Dev Biol, v.400, n.1, p.139-47, 2015. 

Palladino MA, Mallonga TA, Mishra MS. Messenger RNA (mRNA) expression for the antimicrobial 505!

peptides β-defensin-1 and β-defensin-2 in the male rat reproductive tract: β-defensin-1 mRNA in 

initial segment and caput epididymidis is regulated by androgens and not bacterial 

lipopolysaccharides. Biol Reprod, v.68, n.2, p.509-515, 2003. 

Pingel LC, Kohlgraf KG, Hansen CJ, Eastman CG, Dietrich DE, Burnell KK, Srikantha RN, Xiao X, 

Bélanger M, Progulske-Fox A, Cavanaugh JE, Guthmiller JM, Johnson GK, Joly S, Kurago ZB, 510!

Dawson DV, Brogden KA. Human β-defensin 3 binds to hemagglutinin B (rHagB), a non-fimbrial 

adhesin from Porphyromonas gingivalis, and attenuates a pro-inflammatory cytokine response. 

Immunol Cell Biol, v.86, n.8, p.643-9, 2008. 

Preibisch S, Saalfeld S, Tomancak P. Globally optimal stitching of tiled 3D microscopic image 

acquisitions, Bioinformatics, v.25, n.11, p.1463-65, 2009. 515!

Pujianto DA, Loanda E, Sari P, Midoen YH, Soeharso P. Sperm-associated antigen 11A is expressed 

exclusively in the principal cells of the mouse caput epididymis in an androgen-dependent manner. 

Reprod Biol Endocrinol, v.11, p.1-12, 2013. 

Queiróz DB, Porto CS, Grossman G, Petrusz P, Avellar MC. Immunolocalization of alpha(1A)-

adrenoceptors in rat and human epididymis. Cell Tissue Res, v. 332, n. 3, p. 509-22, 2008. 520!

Radhakrishnan Y, Hamil KG, Yenugu S, Young SL, French FS, Hall SH. Identification, 

characterization, and evolution of a primate β-defensin gene cluster. Genes Immun, v.6, p.203-210, 

2005. 

Ribeiro CM, Romano RM, Avellar MCW. β-defensins in the epididymis: clues to multifunctional 



!
25!

roles. Anim Reprod, v.9, n.4, p.751-759, 2012. 525!

Ribeiro CM, Queiróz DB, Patrão MT, Denadai-Souza A, Romano RM, Silva EJ, Avellar MC. 

Dynamic changes in the spatio-temporal expression of the β-defensin SPAG11C in the developing 

rat epididymis and its regulation by androgens. Mol Cell Endocrinol, v.404, p.141-50, 2015. 

Ribeiro CM, Silva EJ, Hinton BT, Avellar MC. β-defensins and the epididymis: contrasting influences 

of prenatal, postnatal, and adult scenarios. Asian J Androl, v.18, n.2, p.323-28, 2016. 530!

Selsted ME, Harwig SS, Ganz T, Schilling JW, Lehrer RI. Primary structures of three human 

neutrophil defensins. J Clin Invest, v.76, n.4, p.1436-9, 1985. 

Semple F, Dorin JR. β-Defensins: multifunctional modulators of infection, inflammation and more?. J 

Innate Immun, v.4, n.4, p.337-48, 2012. 

Schlatt S, Weinbauer GF, Arslan M, Nieschlag E. Appearance of alpha-smooth muscle actin in 535!

peritubular cells of monkey testes is induced by androgens, modulated by follicle-stimulating 

hormone, and maintained after hormonal withdrawal. J Androl, v. 14, n.5, p.340-50, 1993. 

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, 

Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. 

Fiji: an open-source platform for biological-image analysis. Nat Methods, v.9, n.7, p.676-82, 2012. 540!

Simard J, Luthy I, Guay J, Bélanger A, Labrie F. Characteristics of interaction of the antiandrogen 

flutamide with the androgen receptor in various target tissues. Mol Cell Endocrinol, v.44, n.3, 

p.261-70, 1986. 

Taylor K, Barran PE, Dorin JR. Structure-activity relationships in β-defensin peptides. Biopolymers, 

v.90, n.1, p.1-7, 2008. 545!

Tollner TL, Venners SA, Hollox EJ, Yudin AI, Liu X, Tang G, Xing H, Kays RJ, Lau T, Overstreet 

JW, Xu X, Bevins CL, Cherr GN. A common mutation in the defensin DEFB126 causes impaired 

sperm function and subfertility. Sci Transl Med, v.3, n.92, p.ra65, 2011. 



!
26!

Tomaszewski J, Joseph A, Archambeault D, Yao HH. Essential roles of inhibin beta A in mouse 

epididymal coiling. Proc Natl Acad Sci U S A, v.104, n.27, p.11322-7, 2007. 550!

Tsuji M, Shima H, Cunha GR. In vitro androgen-induced growth and morphogenesis of the Wolffian 

duct within urogenital ridge. Endocrinology, v.128, n.4, p. 805-11, 1991. 

Xu B, Washington AM, Domeniconi RF, Ferreira Souza AC, Lu X, Sutherland A, Hinton BT. Protein 

tyrosine kinase 7 is essential for tubular morphogenesis of the Wolffian duct. Dev Biol, v.412, n.2, 

p.219-33, 2016. 555!

Ward IL, Ward OB, Affuso JD, Long WD 3rd, French JA, Hendricks SE Fetal testosterone surge: 

specific modulations induced in male rats by maternal stress and/or alcohol consumption. Horm 

Behav, v.43, n.5, p.531-9, 2003. 

Weisz J, Ward IL. Plasma testosterone and progesterone titers of pregnant rats, their male and female 

fetuses, and neonatal offspring. Endocrinology, v.106, n.1, p.306-16, 1980.  560!
Welsh M, Saunders PT, Marchetti NI, Sharpe, RM. Androgen-dependent mechanisms of Wolffian duct 

development and their perturbation by flutamide. Endocrinology, v.147, n.10, p.4820-30, 2006.  

Welsh M, Saunders PT, Sharpe R.M. The critical time window for androgen-dependent development 

of the Wolffian duct in the rat. Endocrinology, v.148, n.7, p.3185-95, 2007.  

Welsh M, Saunders PT, Fisken M, Scott HM, Hutchison GR, Smith LB, Sharpe RM. Identification in 565!

rats of a programming window for reproductive tract masculinization, disruption of which leads to 

hypospadias and cryptorchidism. J Clin Invest, v.118, n.4, p.1479-90, 2008. 

Welsh M, Sharpe RM, Walker M, Smith LB, Saunders PT. New insights into the role of androgens in 

Wolffian duct stabilization in male and female rodents. Endocrinology, v.150, n.5, p.2472-80, 2009. 

Winter J, Pantelis A, Reich R, Martini M, Kraus D, Jepsen S, Allam JP, Novak N, Wenghoefer M. 570!

Human β-defensin-1, -2, and -3 exhibit opposite effects on oral squamous cell carcinoma cell 

proliferation. Cancer Invest, v.29, n.3, p.196-201, 2011. 

Yenugu S, Chintalgattu V, Wingard CJ, Radhakrishnan Y, French FS, Hall SH. Identification, cloning 



!
27!

and functional characterization of novel β-defensins in the rat (Rattus norvegicus). Reprod Biol 

Endocrinol, v.4, p.7, 2006a. 575!

Yenugu S, Hamil KG, Grossman G, Petrusz P, French FS, Hall SH. Identification, cloning and 

functional characterization of novel sperm associated antigen 11 (SPAG11) isoforms in the rat. 

Reprod Biol Endocrinol, v.4, n.23, 2006b. 

Zhao Y, Diao H, Ni Z, Hu S, Yu H, Zhang Y. The epididymis-specific antimicrobial peptide β-defensin 

15 is required for sperm motility and male fertility in the rat (Rattus norvegicus). Cell Mol Life Sci, 580!

v.68, p.697-708, 2011. 

Zhou CX, Zhang YL, Xiao L, Zheng M, Leung KM, Chan MY, Lo PS, Tsang LL, Wong HY, Ho LS, 

Chung YW, Chan HC. An epididymis-specific β-defensin is important for the initiation of sperm 

maturation. Nat Cell Biol, v. 6, n. 5, p. 458-64, 2004. 

Zhou YS, Webb S, Lettice L, Tardif S, Kilanowski F, Tyrrell C, Macpherson H, Semple F, Tennant P, 585!

Baker T, Hart A, Devenney P, Perry P, Davey T, Barran P, Barratt CL, Dorin JR. Partial Deletion of 

Chromosome 8 β-defensin Cluster Confers Sperm Dysfunction and Infertility in Male Mice. PLoS 

Genet, v.9, n.10, p.e1003826, 2013. 

Zhuravel E, Shestakova T, Efanova O, Yusefovich Y, Lytvin D, Soldatkina M, Pogrebnoy P. Human β-

defensin-2 controls cell cycle in malignant epithelial cells: in vitro study. Exp Oncol, v.33, n.3, 590!

p.114-20, 2011. 

 

  



!
28!

8. FIGURE LEGENDS 

Fig. 1. Morphological differentiation and mRNA expression pattern of rat Wolffian duct (WD) 595!

cultured with increasing testosterone concentrations. Morphological changes (A-L) and mRNA 

levels (M) of WDs collected at e17.5 and cultured in the absence (-) or presence (+) of increasing 

testosterone concentration (T; 0.1-10 nM) for up to 72 h. (A-L) Representative wholemount images 

showing the developmental pattern of cultured ducts (n=6 animals/group from 3 different cultures). 

Scale bar: 500 µm. (M) qPCR relative quantification of Spag11c and Acta 2 mRNA in WDs cultured 600!

for 72 h with increasing testosterone concentrations, as indicated. Transcript levels were normalized 

using Rpl19 as endogenous control and expressed in relation to organs cultured in the absence of 

testosterone. Values are mean ± SEM (n=5 animals/group). One-way ANOVA, followed by Bonferroni 

test; *p<0.05. 

 605!

Fig. 2. Morphological differentiation and mRNA expression pattern of rat Wolffian duct (WD) 

cultured with testosterone and flutamide. Morphological changes (A-P) and mRNA expression 

pattern (Q) in WDs collected at e17.5 and cultured in the absence (-) or presence (+) of 10 nM 

testosterone (T) and/or 10 µM flutamide (Flut) for up to 72 h. (A-T) Representative wholemount 

images showing the developmental pattern of cultured ducts (n=10 animals/group from 5 different 610!

cultures).  Scale bar: A-T, 500 µm. (Q) qPCR quantification of Spag11c and Acta 2 mRNA in WDs 

cultured for 24 or 72 h in the absence or presence of testosterone and/or flutamide, as indicated. 

Transcript levels were normalized using Rpl19 as endogenous control. The comparisons were made 

within each time-point (after 24 or 72 h of culture) and data expressed in relation to organs incubated in 

the absence of testosterone. Values are mean ± SEM (n=3-5 animals/group). One-Way ANOVA 615!

followed by Tukey test; *p<0.05. 
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Fig. 3. SPAG11C immunolocalization in freshly collected rat Wolffian duct (WD) and ducts 

cultured under different androgenic conditions. Comparison of the distribution pattern of SPAG11C 620!

immunoreactivity in freshly collected WD at e17.5 and e20.5 (A-B), as well as in e17.5 ducts cultured 

for 48 h or 72 h in the absence (-) or presence (+) of 10 nM testosterone (T) (G-J). ACTA2 

immunostainings are also shown (D-E, K-N). Negative control consisted of primary antibody 

substituted by normal serum (C, F). Nuclei were stained with DAPI (blue). Results are representative 

of experiments performed in duplicate with tissues from 3 animals/group. WD epithelium, encircled 625!

with a white dashed line, is surrounded by the mesenchyme. Scale bar: A-F, 50 µm.  

 

Fig. 4. SPAG11C immunolocalization in Wolffian duct (WD) from wild type (WT) and AR 

knockout (ARKO) mice at e16.5. Comparison of the SPAG11C immunodistribution pattern in WDs 

from WT (A-G) and ARKO (H-N) mice. Confocal fluorescence maximum projection images: B-G and 630!

I-N are higher magnification of the outlined areas in A and H. WD epithelium, encircled with a white 

dashed line, is surrounded by the mesenchyme in 2x confocal zoom-images (C, E, G, J, L, N). Note the 

mesenchymal cells (yellow arrows) directly surrounding the epithelium, which are characterized by 

absence/low intensity of SPAG11C immunoreactivity in WDs from WT mice (C, E, G). ACTA2 

immunoreactivity, observed in the mesenchymal cells directly surrounding the epithelium of WD from 635!

WT (O) and ARKO (P) mice, was used as positive control. Negative control consisted of primary 

antibody substituted by normal serum (A – inset, Q). Nuclei were stained with DAPI (blue). Results are 

representative of experiments performed in duplicate with tissues from three mice/group. Testis (T), 

Wolffian duct (WD). Scale bars: A, H, 500 µm; B, D, F, I, K, M, O-Q, 50 µm. 

 640!

Fig. 5. Effect of recombinant human SPAG11C (hSPAG11C) on the morphogenesis of the 

cultured Wolffian duct (WD). (A-I) Gross morphology of WDs cultured in the presence of 



!
30!

testosterone (T; 10 nM) and either bovine serum albumin (BSA; 80 nM; A-C) or hSPAG11C (80 nM; 

D-F). Recombinant hSPAG11C was washed out after 48 h of culture (G-I). Scale bar: A-I, 500 µm. 

Duct elongation (J) and coiling (K) was quantified after 72 h of culture. Values are mean ± SEM (n=5-645!

12 animals/group from 3 different cultures). t test; ***p<0.001. (L-N) Number of proliferating 

epithelial cells in WDs cultured for 96 h was determined by immunofluorescence for phospho-histone 

H3. Representative image (objective 40x) of phospho-histone H3 immunofluorescence in organs 

incubated with BSA (L) or recombinant hSPAG11C (M). Nuclei were stained with DAPI (blue) and 

proliferating epithelial cells (red) were marked with yellow arrows. The number of phospho-histone 650!

H3-positive epithelial cells was expressed per mm of WD epithelium. Scale bar: L-M, 50 µm. Values 

are mean ± SEM (total of 6-7 microscope fields from 4 animals/group). t test, **p<0.01. (O-Q) 

Immunofluorescence with anti-his antibody showed hSPAG11C-positive staining in epithelial and 

mesenchymal cells of WDs 96 h-post incubation with recombinant hSPAG11C (P, Q), but not with 

BSA (O) (n=2 animals/group). Scale bar: O-Q, 500 µm. 655!

 

Fig. S1. SPAG11C immunolocalization in rat Wolffian duct (WD) cultured with testosterone and 

flutamide. Comparison of the distribution pattern of SPAG11C immunoreactivity in e17.5 WDs 

cultured in the absence (-) or presence (+) of 10 nM testosterone (T) and/or 10 µM flutamide (Flut) for 

72 h. Nuclei were stained with DAPI (blue). Results are representative of experiments performed in 660!

duplicate with tissues from 3 animals/group. Scale bar: A-F, 50 µm. 

 

Fig. S2. Apoptosis in Wolffian duct (WD) cultured with recombinant human SPAG11C 

(hSPAG11C). Apoptosis was assessed by immunofluorescence for cleaved caspase-3 in WDs cultured 

with hSPAG11C (80 nM) or BSA for 96 h. Positive control consisted of immunostaining in bladder, 665!

which is a thicker tissue that was cultured together with WDs. Negative control consisted of primary 



!
31!

antibody substituted by normal rabbit serum. Results are representative of experiments performed in 

duplicate with tissues from 3 animals/group. Scale bar: A-D, 5O µm. 

 

Fig. S3. Comparison of Spag11c mRNA levels in Wolffian (WD) and Müllerian ducts (MD). 670!

Values of Spag11c mRNA levels were normalized using Rpl19 as endogenous control. Results were 

expressed in relation to WDs at e17.5. Values are mean ± SEM (n=3-4 animals/group). *p<0.05, Two-

Way ANOVA followed by Bonferroni test; *p<0.05.  
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