1,074 research outputs found

    Magnetic domain structure and dynamics in interacting ferromagnetic stacks with perpendicular anisotropy

    Full text link
    The time and field dependence of the magnetic domain structure at magnetization reversal were investigated by Kerr microscopy in interacting ferromagnetic Co/Pt multilayers with perpendicular anisotropy. Large local inhomogeneous magnetostatic fields favor mirroring domain structures and domain decoration by rings of opposite magnetization. The long range nature of these magnetostatic interactions gives rise to ultra-slow dynamics even in zero applied field, i.e. it affects the long time domain stability. Due to this additionnal interaction field, the magnetization reversal under short magnetic field pulses differs markedly from the well-known slow dynamic behavior. Namely, in high field, the magnetization of the coupled harder layer has been observed to reverse more rapidly by domain wall motion than the softer layer alone.Comment: 42 pages including 17 figures. submitted to JA

    Metal–Support Interactions in Heterogeneous Catalysis: DFT Calculations on the Interaction of Copper Nanoparticles with Magnesium Oxide

    Get PDF
    Oxide supports play an important role in enhancing the catalytic properties of transition metal nanoparticles in heterogeneous catalysis. How extensively interactions between the oxide support and the nanoparticles impact the electronic structure as well as the surface properties of the nanoparticles is hence of high interest. In this study, the influence of a magnesium oxide support on the properties of copper nanoparticles with different size, shape, and adsorption sites is investigated using density functional theory (DFT) calculations. By proposing simple models to reduce the cost of the calculations while maintaining the accuracy of the results, we show using the nonreducible oxide support MgO as an example that there is no significant influence of the MgO support on the electronic structure of the copper nanoparticles, with the exception of adsorption directly at the Cu–MgO interface. We also propose a simplified methodology that allows us to reduce the cost of the calculations, while the accuracy of the results is maintained. We demonstrate in addition that the Cu nanowire model corresponds well to the nanoparticle model, which reduces the computational cost even further

    Theoretical Investigation of the Size Effect on the Oxygen Adsorption Energy of Coinage Metal Nanoparticles

    Get PDF
    This study evaluates the finite size effect on the oxygen adsorption energy of coinage metal (Cu, Ag and Au) cuboctahedral nanoparticles in the size range of 13 to 1415 atoms (0.7–3.5\ua0nm in diameter). Trends in particle size effects are well described with single point calculations, in which the metal atoms are frozen in their bulk position and the oxygen atom is added in a location determined from periodic surface calculations. This is shown explicitly for Cu nanoparticles, for which full geometry optimization only leads to a constant offset between relaxed and unrelaxed adsorption energies that is independent of particle size. With increasing cluster size, the adsorption energy converges systematically to the limit of the (211) extended surface. The 55-atomic cluster is an outlier for all of the coinage metals and all three materials show similar behavior with respect to particle size

    Thermal emissivity of silicon heterojunction solar cells

    Get PDF
    The aim of this work is to evaluate whether silicon heterojunction solar cells, lacking highly emissive, heavily doped silicon layers, could be better candidates for hybrid photovoltaic thermal collectors than standard aluminium-diffused back contact solar cells. To this end, the near and mid infrared emissivity of full silicon heterojunction solar cells, as well as of its constituent materials – crystalline silicon wafer, indium tin oxide, n-, i- and p-type amorphous silicon – have been assessed by means of ellipsometry and FTIR. The experimental results show that the thermal emissivity of these cells is actually as high as in the more traditional structures, ~80% at 8 μm. Detailed optical modelling combining raytracing and transfer matrix formalism shows that the emissivity in these cells originates in the transparent conductive oxide layers themselves, where the doping is not high enough to result in a reflection that exceeds the increased free carrier absorption. Further modelling suggests that it is possible to obtain lower emissivity solar cells, but that a careful optimization of the transparent conductive layer needs to be done to avoid hindering the photovoltaic performance

    Testing alternative uses of electromagnetic data to reduce the prediction error of groundwater models

    Get PDF
    In spite of geophysics being used increasingly, it is often unclear how and when the integration of geophysical data and models can best improve the construction and predictive capability of groundwater models. This paper uses a newly developed HYdrogeophysical TEst-Bench (HYTEB) that is a collection of geological, groundwater and geophysical modeling and inversion software to demonstrate alternative uses of electromagnetic (EM) data for groundwater modeling in a hydrogeological environment consisting of various types of glacial deposits with typical hydraulic conductivities and electrical resistivities covering impermeable bedrock with low resistivity (clay). The synthetic 3-D reference system is designed so that there is a perfect relationship between hydraulic conductivity and electrical resistivity. For this system it is investigated to what extent groundwater model calibration and, often more importantly, model predictions can be improved by including in the calibration process electrical resistivity estimates obtained from TEM data. In all calibration cases, the hydraulic conductivity field is highly parameterized and the estimation is stabilized by (in most cases) geophysics-based regularization. For the studied system and inversion approaches it is found that resistivities estimated by sequential hydrogeophysical inversion (SHI) or joint hydrogeophysical inversion (JHI) should be used with caution as estimators of hydraulic conductivity or as regularization means for subsequent hydrological inversion. The limited groundwater model improvement obtained by using the geophysical data probably mainly arises from the way these data are used here: the alternative inversion approaches propagate geophysical estimation errors into the hydrologic model parameters. It was expected that JHI would compensate for this, but the hydrologic data were apparently insufficient to secure such compensation. With respect to reducing model prediction error, it depends on the type of prediction whether it has value to include geophysics in a joint or sequential hydrogeophysical model calibration. It is found that all calibrated models are good predictors of hydraulic head. When the stress situation is changed from that of the hydrologic calibration data, then all models make biased predictions of head change. All calibrated models turn out to be very poor predictors of the pumping well's recharge area and groundwater age. The reason for this is that distributed recharge is parameterized as depending on estimated hydraulic conductivity of the upper model layer, which tends to be underestimated. Another important insight from our analysis is thus that either recharge should be parameterized and estimated in a different way, or other types of data should be added to better constrain the recharge estimates

    Using zeta-potential measurements to quantify peptide partition to lipid membranes

    Get PDF
    © The Author(s) 2011. This article is published with open access at Springerlink.com.Open Access: This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.Many cellular phenomena occur on the biomembranes. There are plenty of molecules (natural or xenobiotics) that interact directly or partially with the cell membrane. Biomolecules, such as several peptides (e.g., antimicrobial peptides) and proteins, exert their effects at the cell membrane level. This feature makes necessary investigating their interactions with lipids to clarify their mechanisms of action and side effects necessary. The determination of molecular lipid/water partition constants (Kp) is frequently used to quantify the extension of the interaction. The determination of this parameter has been achieved by using different methodologies, such as UV-Vis absorption spectrophotometry, fluorescence spectroscopy and ζ-potential measurements. In this work, we derived and tested a mathematical model to determine the Kp from ζ-potential data. The values obtained with this method were compared with those obtained by fluorescence spectroscopy, which is a regular technique used to quantify the interaction of intrinsically fluorescent peptides with selected biomembrane model systems. Two antimicrobial peptides (BP100 and pepR) were evaluated by this new method. The results obtained by this new methodology show that ζ-potential is a powerful technique to quantify peptide/lipid interactions of a wide variety of charged molecules, overcoming some of the limitations inherent to other techniques, such as the need for fluorescent labeling.This work was partially supported by project PTDC/QUI/ 69937/2006 from Fundação para a Ciência e Tecnologia-Ministério da Ciência, Tecnologia e Ensino Superior (FCT-MCTES, Portugal), and by Fundação Calouste Gulbenkian (Portugal). JMF and MMD also thank FCT-MCTES for grants IMM/BT/37-2010 and SFRH/BD/41750/2007, respectively

    Physical activity and sedentary behavior from 6 to 11 years

    Get PDF
    OBJECTIVES: Physical activity (PA) is presumed to decline during childhood and adolescence, but only few long-term studies about PA development during this period of life exist. We assessed PA and sedentary behavior (SB) over a 5-year period to gain a better understanding of the extent of change in activity and potential influencing factors. METHODS: PA and SB of 600 children from the Childhood Obesity Project were objectively measured with the SenseWear Armband 2 at the ages of 6, 8, and 11 years, resulting in 1254 observations. Longitudinal changes of total PA, moderate-to-vigorous physical activity (MVPA), light physical activity (LPA), and SB were modeled with mixed-effects models. RESULTS: Total PA revealed a significant quadratic decline with age (P < .001), resulting in a change of total PA by -75.3 minutes per day from 6 to 11 years. LPA linearly declined (P < .001) by 44.6 minutes per day, MVPA quadratically declined (P < .001) by an overall 30.7 minutes, whereas SB increased significantly (+107 minutes; P = .001). Boys showed a steeper decline in LPA (P = .003) and MVPA (P < .001) than did girls. Higher fat mass index and BMI z scores were associated with lower levels of total PA and MVPA and higher levels of SB (all P < .001). CONCLUSIONS: We showed that PA decreased, and SB increased in earlier years than previously thought. MVPA remained relatively stable until 8 years, but revealed a drop-off at 11 years, identifying this period as a crucial time for intervention

    SEWAL: an open-source platform for next-generation sequence analysis and visualization

    Get PDF
    Next-generation DNA sequencing platforms provide exciting new possibilities for in vitro genetic analysis of functional nucleic acids. However, the size of the resulting data sets presents computational and analytical challenges. We present an open-source software package that employs a locality-sensitive hashing algorithm to enumerate all unique sequences in an entire Illumina sequencing run (∼108 sequences). The algorithm results in quasilinear time processing of entire Illumina lanes (∼107 sequences) on a desktop computer in minutes. To facilitate visual analysis of sequencing data, the software produces three-dimensional scatter plots similar in concept to Sewall Wright and John Maynard Smith’s adaptive or fitness landscape. The software also contains functions that are particularly useful for doped selections such as mutation frequency analysis, information content calculation, multivariate statistical functions (including principal component analysis), sequence distance metrics, sequence searches and sequence comparisons across multiple Illumina data sets. Source code, executable files and links to sample data sets are available at http://www.sourceforge.net/projects/sewal

    First-in-human immunoPET imaging of COVID-19 convalescent patients using dynamic total-body PET and a CD8-targeted minibody

    Get PDF
    With most of the T cells residing in the tissue, not the blood, developing noninvasive methods for in vivo quantification of their biodistribution and kinetics is important for studying their role in immune response and memory. This study presents the first use of dynamic positron emission tomography (PET) and kinetic modeling for in vivo measurement of CD8+ T cell biodistribution in humans. A 89Zr-labeled CD8-targeted minibody (89Zr-Df-Crefmirlimab) was used with total-body PET in healthy individuals (N = 3) and coronavirus disease 2019 (COVID-19) convalescent patients (N = 5). Kinetic modeling results aligned with T cell-trafficking effects expected in lymphoid organs. Tissue-to-blood ratios from the first 7 hours of imaging were higher in bone marrow of COVID-19 convalescent patients compared to controls, with an increasing trend between 2 and 6 months after infection, consistent with modeled net influx rates and peripheral blood flow cytometry analysis. These results provide a promising platform for using dynamic PET to study the total-body immune response and memory
    corecore