27 research outputs found

    Healing of bronchopleural fistula using a modified Dumon stent: a case report

    Get PDF
    BACKGROUND: Brochopleural fistula following lung resection is a therapeuric challenge for thoracic surgeons. CASE PRESENTATION: We describe a case of late bronchopleural fistula after right extrapleural pneumonectomy for malignant mesothelioma. Bronchoscopic attempts to repair it were unsuccessful. CONCLUSION: The use of a modified Y Dumon stent associated with glue apposition on the bronchial stump allowed us to close the fistula without the need of any surgical repair

    Pan-Atlantic analysis of the overlap of a highly migratory species, the leatherback turtle, with pelagic longline fisheries

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Large oceanic migrants play important roles in ecosystems, yet many species are of conservation concern as a result of anthropogenic threats, of which incidental capture by fisheries is frequently identified. The last large populations of the leatherback turtle, Dermochelys coriacea, occur in the Atlantic Ocean, but interactions with industrial fisheries could jeopardize recent positive population trends, making bycatch mitigation a priority. Here, we perform the first pan-Atlantic analysis of spatio-temporal distribution of the leatherback turtle and ascertain overlap with longline fishing effort. Data suggest that the Atlantic probably consists of two regional management units: northern and southern (the latter including turtles breeding in South Africa). Although turtles and fisheries show highly diverse distributions, we highlight nine areas of high susceptibility to potential bycatch (four in the northern Atlantic and five in the southern/equatorial Atlantic) that are worthy of further targeted investigation and mitigation. These are reinforced by reports of leatherback bycatch at eight of these sites. International collaborative efforts are needed, especially from nations hosting regions where susceptibility to bycatch is likely to be high within their exclusive economic zone (northern Atlantic: Cape Verde, Gambia, Guinea Bissau, Mauritania, Senegal, Spain, USA and Western Sahara; southern Atlantic: Angola, Brazil, Namibia and UK) and from nations fishing in these high-susceptibility areas, including those located in international waters.Work in Gabon was financially supported by the Large Pelagics Research Center through National Oceanographic and Atmospheric Agency award no. NA04NMF4550391, the UK Defra Darwin Initiative, the Shellshock Campaign (European Association for Zoos and Aquaria) and the UK Natural Environment Research Council. Sea turtle monitoring programmes in Gabon were financially supported by the Wildlife Conservation Society and by the Gabon Sea Turtle Partnership with funding from the Marine Turtle Conservation Fund (United States Fish and Wildlife Service, US Department of the Interior). Four of the satellite tags were deployed in Canadian waters by M. James (Dalhousie University) and the Canadian Sea Turtle Network, with the funding support of Canadian Sea Turtle Network leatherback field research provided by R. A. Myers, the Canadian Wildlife Federation, Environment Canada and WWF-Canada. Work in French Guiana was financially supported by CNES, DEAL and the European Union.This study results from the collaborative effort of 10 data providers, which have satellite-tracked leatherback turtles in the Atlantic Ocean since 1995, through their voluntary participation in the Trans-Atlantic Leatherback Conservation Initiative (TALCIN), a WWF-led initiative. We thank C. Drews (WWF-International) and Jean-Yves Georges (IPHC-CNRS) for having initiated this project. Significant contributions were made by A. Fonseca and M. L. Felix and the WWF Guianas office in fostering this project to secure its continuation. We thank those involved in the sea turtle restoration plan in French Guiana (DEAL, ONCFS, Kulalasi NGO, Kwata, the Reserve Naturelle de l'Amana, Chiefs of Awala and Yalimapo), Yvon Le Maho (IPHC-CNRS) for having initiated the leatherback tracking programme in French Guiana, colleagues from the Regional Program for Sea Turtles Research and Conservation of Argentina–PRICTMA, Aquamarina and Fundación Mundo Marino, the onboard scientific observers from PNOFA-DINARA, the crew and owner of the F/V Torres del Paine, the artisanal fishermen from Kiyú, San José, Uruguay, D. del Bene (PROFAUMA), Z. Di Rienzo and colleagues from Karumbé, the University of Pisa for initiating the satellite tagging programmes in South Africa, and the South African Department of Environmental Affairs for continuing the work in cooperation with Dr Nel from the Nelson Mandela Metropolitan University, Port Elizabeth and Ezemvelo KZN Wildlife. We thank M. L. Felix for her efforts in the deployment of satellite tags in Suriname and the Nature Conservation Division Suriname for facilitating these research efforts. P.M. thanks C. Palma for his help in dealing with ICCAT's database, C. Ere, as well as the GIS training and support received from SCGIS and the ESRI Conservation Program, which allowed processing of fishing-effort data. We thank J. Parezo for her careful reading of the manuscript. All authors designed the study and contributed data; S.F, M.S.C., P.M. and M.J.W. compiled the data; S.F., M.A.N. and A.L. coordinated and supervised the project; S.F., M.J.W., P.M. and B.J.G. led the data analysis and interpretation with contributions from all authors; the manuscript was developed by S.F. and M.J.W. as lead authors, with contributions from all authors

    Pan-Atlantic analysis of the overlap of a highly migratory species, the leatherback turtle, with pelagic longline fisheries

    Get PDF
    Large oceanic migrants play important roles in ecosystems, yet many species are of conservation concern as a result of anthropogenic threats, of which incidental capture by fisheries is frequently identified. The last large populations of the leatherback turtle, Dermochelys coriacea, occur in the Atlantic Ocean, but interactions with industrial fisheries could jeopardize recent positive population trends, making bycatch mitigation a priority. Here, we perform the first pan-Atlantic analysis of spatio-temporal distribution of the leatherback turtle and ascertain overlap with longline fishing effort. Data suggest that the Atlantic probably consists of two regional management units: northern and southern (the latter including turtles breeding in South Africa). Although turtles and fisheries show highly diverse distributions, we highlight nine areas of high susceptibility to potential bycatch (four in the northern Atlantic and five in the southern/equatorial Atlantic) that are worthy of further targeted investigation and mitigation. These are reinforced by reports of leatherback bycatch at eight of these sites. International collaborative efforts are needed, especially from nations hosting regions where susceptibility to bycatch is likely to be high within their exclusive economic zone (northern Atlantic: Cape Verde, Gambia, Guinea Bissau, Mauritania, Senegal, Spain, USA and Western Sahara; southern Atlantic: Angola, Brazil, Namibia and UK) and from nations fishing in these high-susceptibility areas, including those located in international waters

    Satellite Tracking Reveals Long Distance Coastal Travel and Homing by Translocated Estuarine Crocodiles, Crocodylus porosus

    Get PDF
    Crocodilians have a wide distribution, often in remote areas, are cryptic, secretive and are easily disturbed by human presence. Their capacity for large scale movements is poorly known. Here, we report the first study of post-release movement patterns in translocated adult crocodiles, and the first application of satellite telemetry to a crocodilian. Three large male Crocodylus porosus (3.1–4.5 m) were captured in northern Australia and translocated by helicopter for 56, 99 and 411 km of coastline, the last across Cape York Peninsula from the west coast to the east coast. All crocodiles spent time around their release site before returning rapidly and apparently purposefully to their capture locations. The animal that circumnavigated Cape York Peninsula to return to its capture site, travelled more than 400 km in 20 days, which is the longest homeward travel yet reported for a crocodilian. Such impressive homing ability is significant because translocation has sometimes been used to manage potentially dangerous C. porosus close to human settlement. It is clear that large male estuarine crocodiles can exhibit strong site fidelity, have remarkable navigational skills, and may move long distances following a coastline. These long journeys included impressive daily movements of 10–30 km, often consecutively

    Pan-atlantic analysis of the overlap of a highly migratory species, the leatherback turtle, with pelagic longline fisheries

    Full text link
    Large oceanic migrants play important roles in ecosystems, yet many species are of conservation concern as a result of anthropogenic threats, of which incidental capture by fisheries is frequently identified. The last large populations of the leatherback turtle, Dermochelys coriacea, occur in the Atlantic Ocean, but interactions with industrial fisheries could jeopardize recent positive population trends, making bycatch mitigation a priority. Here, we perform the first pan-Atlantic analysis of spatio-temporal distribution of the leatherback turtle and ascertain overlap with longline fishing effort. Data suggest that the Atlantic probably consists of two regional management units: northern and southern (the latter including turtles breeding in South Africa). Although turtles and fisheries show highly diverse distributions, we highlight nine areas of high susceptibility to potential bycatch (four in the northern Atlantic and five in the southern/equatorial Atlantic) that are worthy of further targeted investigation and mitigation. These are reinforced by reports of leatherback bycatch at eight of these sites. International collaborative efforts are needed, especially from nations hosting regions where susceptibility to bycatch is likely to be high within their exclusive economic zone (northern Atlantic: Cape Verde, Gambia, Guinea Bissau, Mauritania, Senegal, Spain, USA and Western Sahara; southern Atlantic: Angola, Brazil, Namibia and UK) and from nations fishing in these high-susceptibility areas, including those located in international waters

    Movement Patterns for a Critically Endangered Species, the Leatherback Turtle (Dermochelys coriacea), Linked to Foraging Success and Population Status

    Get PDF
    Foraging success for pelagic vertebrates may be revealed by horizontal and vertical movement patterns. We show markedly different patterns for leatherback turtles in the North Atlantic versus Eastern Pacific, which feed on gelatinous zooplankton that are only occasionally found in high densities. In the Atlantic, travel speed was characterized by two modes, indicative of high foraging success at low speeds (<15 km d−1) and transit at high speeds (20–45 km d−1). Only a single mode was evident in the Pacific, which occurred at speeds of 21 km d−1 indicative of transit. The mean dive depth was more variable in relation to latitude but closer to the mean annual depth of the thermocline and nutricline for North Atlantic than Eastern Pacific turtles. The most parsimonious explanation for these findings is that Eastern Pacific turtles rarely achieve high foraging success. This is the first support for foraging behaviour differences between populations of this critically endangered species and suggests that longer periods searching for prey may be hindering population recovery in the Pacific while aiding population maintenance in the Atlantic

    Atlantic Leatherback Migratory Paths and Temporary Residence Areas

    Get PDF
    BACKGROUND: Sea turtles are long-distance migrants with considerable behavioural plasticity in terms of migratory patterns, habitat use and foraging sites within and among populations. However, for the most widely migrating turtle, the leatherback turtle Dermochelys coriacea, studies combining data from individuals of different populations are uncommon. Such studies are however critical to better understand intra- and inter-population variability and take it into account in the implementation of conservation strategies of this critically endangered species. Here, we investigated the movements and diving behaviour of 16 Atlantic leatherback turtles from three different nesting sites and one foraging site during their post-breeding migration to assess the potential determinants of intra- and inter-population variability in migratory patterns. METHODOLOGY/PRINCIPAL FINDINGS: Using satellite-derived behavioural and oceanographic data, we show that turtles used Temporary Residence Areas (TRAs) distributed all around the Atlantic Ocean: 9 in the neritic domain and 13 in the oceanic domain. These TRAs did not share a common oceanographic determinant but on the contrary were associated with mesoscale surface oceanographic features of different types (i.e., altimetric features and/or surface chlorophyll a concentration). Conversely, turtles exhibited relatively similar horizontal and vertical behaviours when in TRAs (i.e., slow swimming velocity/sinuous path/shallow dives) suggesting foraging activity in these productive regions. Migratory paths and TRAs distribution showed interesting similarities with the trajectories of passive satellite-tracked drifters, suggesting that the general dispersion pattern of adults from the nesting sites may reflect the extent of passive dispersion initially experienced by hatchlings. CONCLUSIONS/SIGNIFICANCE: Intra- and inter-population behavioural variability may therefore be linked with initial hatchling drift scenarios and be highly influenced by environmental conditions. This high degree of behavioural plasticity in Atlantic leatherback turtles makes species-targeted conservation strategies challenging and stresses the need for a larger dataset (>100 individuals) for providing general recommendations in terms of conservation

    Isotope Analysis Reveals Foraging Area Dichotomy for Atlantic Leatherback Turtles

    Get PDF
    Background: The leatherback turtle (Dermochelys coriacea) has undergone a dramatic decline over the last 25 years, and this is believed to be primarily the result of mortality associated with fisheries bycatch followed by egg and nesting female harvest. Atlantic leatherback turtles undertake long migrations across ocean basins from subtropical and tropical nesting beaches to productive frontal areas. Migration between two nesting seasons can last 2 or 3 years, a time period termed the remigration interval (RI). Recent satellite transmitter data revealed that Atlantic leatherbacks follow two major dispersion patterns after nesting season, through the North Gulf Stream area or more eastward across the North Equatorial Current. However, information on the whole RI is lacking, precluding the accurate identification of feeding areas where conservation measures may need to be applied. Methodology/Principal Findings: Using stable isotopes as dietary tracers we determined the characteristics of feeding grounds of leatherback females nesting in French Guiana. During migration, 3-year RI females differed from 2-year RI females in their isotope values, implying differences in their choice of feeding habitats (offshore vs. more coastal) and foraging latitude (North Atlantic vs. West African coasts, respectively). Egg-yolk and blood isotope values are correlated in nesting females, indicating that egg analysis is a useful tool for assessing isotope values in these turtles, including adults when not available. Conclusions/Significance: Our results complement previous data on turtle movements during the first year following the nesting season, integrating the diet consumed during the year before nesting. We suggest that the French Guiana leatherback population segregates into two distinct isotopic groupings, and highlight the urgent need to determine the feeding habitats of the turtle in the Atlantic in order to protect this species from incidental take by commercial fisheries. Our results also emphasize the use of eggs, a less-invasive sampling material than blood, to assess isotopic data and feeding habits for adult female leatherbacks
    corecore