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French Guiana
7Aquamarina, Del Besugo 1525, Pinamar, Buenos Aires 7167, Argentina
8Jardı́n Zoológico de la Ciudad de Buenos Aires, Republica de la India 3000, Buenos Aires 1425, Argentina
9Regional Program for Sea Turtles Research and Conservation of Argentina (PRICTMA) Smith 37, 1876-Bernal,
Provincia de Buenos Aires, Argentina
10ICMBio – Reserva Biológica de Comboios, Linhares, ES 29900-970, Brazil
11Asociación LAST, Apdo 496-1100, Tibás, Costa Rica
12SEATURTLE.org, 1 Southampton Place, Durham, NC 27705, USA
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Large oceanic migrants play important roles in ecosystems, yet many species are

of conservation concern as a result of anthropogenic threats, of which incidental

capture by fisheries is frequently identified. The last large populations of the

leatherback turtle, Dermochelys coriacea, occur in the Atlantic Ocean, but inter-

actions with industrial fisheries could jeopardize recent positive population

trends, making bycatch mitigation a priority. Here, we perform the first pan-

Atlantic analysis of spatio-temporal distribution of the leatherback turtle and

ascertain overlap with longline fishing effort. Data suggest that the Atlantic

probably consists of two regional management units: northern and southern

(the latter including turtles breeding in South Africa). Although turtles and
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fisheriesshow highly diverse distributions, we highlight nine

areas of high susceptibility to potential bycatch (four in the

northern Atlantic and five in thesouthern/equatorial Atlantic)

that are worthy of further targeted investigation and mitiga-

tion. These are reinforced by reports of leatherback bycatch

at eight of these sites. International collaborative efforts are

needed, especially from nations hosting regions where suscep-

tibility to bycatch is likely to be high within their exclusive

economic zone (northern Atlantic: Cape Verde, Gambia,

Guinea Bissau, Mauritania, Senegal, Spain, USA and Western

Sahara; southern Atlantic: Angola, Brazil, Namibia and UK)

and from nations fishing in these high-susceptibility areas,

including those located in international waters.
c.B
281:20133065
1. Introduction
In recent years, there has been increasing effort to sustainably

manage fish populations and reverse the collapse of many

target species [1]. Many non-targeted species, however, are

also of conservation concern, partly owing to their incidental

capture by fisheries or ‘bycatch’ [2]. Bycatch occurs globally

and can particularly impact highly migratory species, whose

movements can lead to an increased probability of interaction

[3]. Assessing the susceptibility of such species to bycatch is chal-

lenging, as it requires an understanding of the transboundary

nature of their movements, and thus requires multinational

collaboration [4]. A key step forward is to map the spatio-

temporal distribution of the species and the extent of interactions

with fisheries (e.g. [5]). Adopting this approach generally

requires large numbers of individuals to be remotely tracked,

preferably from different populations and overextended periods

of time, which few individual projects have achieved [6–9].

The highly migratory leatherback turtle, Dermochelys
coriacea, is of conservation concern mainly due to the recent

dramatic declines in the Pacific [10]. Today, the majority of

the world’s leatherback turtles occur in the Atlantic Ocean

[11,12], where several rookeries have been reported to be

stable or increasing [11]. Although conservation measures at

sub-basin scales have been implemented [13], in both the

northern and southern Atlantic bycatch in artisanal and indus-

trial fisheries remains a major threat [3,14,15]. In the Atlantic

Ocean, the scale of pelagic longline fishing effort is particularly

extensive [16] and these fisheries may have a considerable

impact on leatherback turtles [3,14–16]. Initial studies in the

northern Atlantic have suggested that leatherbacks may be

particularly at risk along dynamic oceanic fronts, where turtles

feed on gelatinous plankton [17,18] and where fisheries also

concentrate [19,20], although these findings are based on

small sample sizes (n , 10 individuals). In the past decade,

more than 30 satellite-tracking studies of leatherback turtles

in the Atlantic Ocean have been published (see electronic sup-

plementary material, table S1) and each of these studies has

given an essential, yet partial description of habitat use.

Here, we present the first integrated analysis of the spatio-

temporal distribution and habitat use of leatherback turtles

between reproductive seasons at the scale of the Atlantic Ocean.

This information is combined with data on the distribution of

pelagic longline fishing effort obtained from the International

Commission for the Conservation of Atlantic Tunas (ICCAT)

across the same temporal period. This study presents a unique

opportunity to identify the areas and seasons of highest
susceptibility to turtle bycatch, and provides much-needed pre-

liminary guidance on the design and implementation of

potential bycatch mitigation measures at an oceanic scale.
2. Material and methods
(a) Turtle-tracking dataset
Between June 1995 and February 2010, 106 platform transmitter

terminals (PTTs) were deployed on leatherback turtles in the

Atlantic Ocean and in the southwestern Indian Ocean (see elec-

tronic supplementary material, table S1). Our study involves an

integrative synthesis of these data, which were all previously pub-

lished in scientific peer-reviewed literature, except for two tracks

(see electronic supplementary material, table S1). PTTs were pre-

dominantly attached to females (n ¼ 101), with four on males

and one on a juvenile (sex unknown). The majority of females

(n ¼ 93) were equipped while nesting at 13 sites fringing the Atlan-

tic Ocean and at one site in the southwestern Indian Ocean (see

electronic supplementary material, table S1), while the remaining

turtles (n ¼ 4 males, 8 females and 1 juvenile) were equipped at

sea. Warehousing and standardization of satellite-tracking data

from the research groups, which spanned 10 countries and four

continents, were achieved using the Satellite Tracking and Analy-

sis Tool (STAT) [21]. Transmissions were collected and relayed via

the Argos System (https://argos-system.cls.fr). Only locations

with LC (Location Classes) 3, 2, 1, A and B were used. The locations

were filtered using the maximum rate of travel of 10 km h21 and

the maximum azimuth of 358 between successive locations [22].

The location with the greatest spatial accuracy received in each

24 h period (00.00–23.59 UTC) was then selected to minimize

spatio-temporal autocorrelation in the dataset. For each turtle,

when no location was received during a 24 h period, a linear

interpolation was used to interpolate the route, but only for up

to 5 days following the last received valid location. For turtles

equipped in the nesting season, only movements recorded

during the post-nesting period were used in the analysis.

(i) Weighting factors and normalization
Unequal tracking durations
No leatherback turtle has been tracked throughout a complete inter-

breeding migration, which is estimated to be between 1095 and 1460

days for Atlantic leatherback turtles (maximum tracking duration ¼

713.1 days). In order to account for (i) tracks of different durations

and (ii) tracks that end near the release location, a weighting factor

was applied to the tracking dataset following the method developed

by Block et al. [6]. All tracks were normalized by weighting each

location estimate by the inverse of the number of individuals that

had location estimates for the same relative day of their track. We

imposed a threshold relative day of tracking (85th percentile of the

frequency distribution of the track lengths, i.e. 337th day) above

which locations received the same weight as on the threshold day.

Sixteen tracks were longer than 337 days, therefore every position

after this day received a weighting of 1/16. This method, by increas-

ing the weight of later locations and longer tracks, reduced the bias

in the spatial coverage towards deployment locations.

Unequal sample sizes among tagging sites
The number of deployed satellite tags differed among the nesting

sites and tagging effort was not proportional to the estimated num-

ber of females nesting at each site (Spearman’s rank correlation, p¼
0.086). In order to account for these unequal and unbalanced sample

sizes, a second weighting factor was applied to the tracking dataset.

Each rookery was assigned a weight between 0 and 1, proportional

to the size of its nesting population (estimated by previous studies

[23–25]) relative to the estimated total number of nesting females

in the Atlantic Ocean (i.e. approx. 16 600 adult females) [23]. The

https://argos-system.cls.fr
https://argos-system.cls.fr
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Central Africa nesting assemblage was given a weight of 0.3,

because the number of nesting females is estimated to be about

5000 (i.e. approx. 30% of the estimated total number of nesting

females in the Atlantic Ocean) [23]. The same weight was given to

the French Guiana/Suriname nesting assemblage (approx. 5000

nesting females). Weights of 0.18, 0.15, 0.04, 0.015, 0.003 and 0.003

were assigned to Trinidad and Tobago (approx. 3000 nesting

females), Costa Rica/Panama (approx. 2500 nesting females),

Florida (approx. 750 nesting females), Grenada (approx. 250 nesting

females), South Africa (approx. 50 nesting females) and Brazil

(approx. 50 nesting females) nesting assemblages, respectively.

Thirteen turtles were equipped with satellite tags on their fora-

ging grounds and therefore could not be directly attributed to any

particular nesting assemblage. We therefore attributed each of

these tracks to the most likely nesting assemblage, based on the

best scientific information available. Seven turtles were captured

in the southwestern Atlantic Ocean. Considering that the main

nesting population in the southern Atlantic is the Central African

population (5000 females versus 50 females in Brazil), we attribu-

ted all seven tracks to the former and gave them a weight of 0.3.

Two turtles were captured at sea off Ireland. The origin of leather-

back turtles foraging in the northeast Atlantic has not yet been

investigated, therefore we arbitrarily, but conservatively, attribu-

ted both tracks to the French Guiana nesting assemblage and

weighted them accordingly. Four turtles were captured at sea off

the Atlantic coast of Canada. A recent study investigating the

origin of leatherback turtles foraging in Canadian waters [26]

allowed us to attribute two tracks to the French Guiana assem-

blage, one track to the Trinidad and Tobago assemblage and one

track to the Costa Rica/Panama nesting assemblage, and gave

weights of 0.3, 0.18 and 0.15, respectively.

The weighting process ensured that tracks from larger nesting

assemblages contributed a higher weight in subsequent density

mapping than those from smaller nesting assemblages, even

though tagging effort was disproportionate among the nesting sites.

(ii) Mapping of turtle distribution
A density map was constructed for each nesting assemblage from

filtered, tracking-duration-weighted location data. The population

size-weighting process was applied to each nesting-assemblage-

specific spatial density map. The maps from each nesting

assemblage were then summed to estimate areas of high use. Three

occupancy classes were defined, and therefore three types of areas:

low- (less than 25th percentile), medium- (more than or equal to

25th and less than 75th percentile) and high-use areas (more

than or equal to 75th percentile). Following the same method,

maps were also constructed for each quarter (i.e. January–March,

April–June, July–September and October–December).

(b) Fisheries dataset
All spatio-temporally relevant pelagic longline fishing effort data

from the T2CE (Task II Catch and Effort) database from the

ICCAT were utilized (1995–2009; northern and southern Atlantic).

Fisheries data were prepared at monthly intervals to a spatial res-

olution of 5 � 58. Only the records of fishing-effort reporting the

number of hooks deployed were considered, as effort reported

using other units was estimated to account for less than 2%

of the total effort. Three fishing-effort classes were defined: low

(less than 25th percentile, i.e. less than 7375 hooks km22),

medium (more than or equal to 25th and less than 75th percentile,

i.e. 7375 �medium , 58 748 hooks km22) and high (more than or

equal to 75th percentile, i.e. 58 848 � high , 415 757 hooks km22).

Three classes representing the consistency in fishing effort were

also defined: constant (less than 25th percentile), moderate

(more than or equal to 25th and less than 75th percentile) and vari-

able effort (more than or equal to 75th percentile). Three classes

representing the fishery pressure were subsequently defined
based on a combination of the three fishing-effort classes and the

three classes representing consistency in fishing effort. This pressure

index had three levels: low, medium and high pressure. For a given

level of fishing effort (low, medium or high), we assumed that con-

stant (i.e. sustained) fishing effort has more impact on a species or an

ecosystem than variable (i.e. irregular) fishing effort (e.g. [27]).

Therefore areas with the following combinations of fishing effort

and fishing consistency classes received a low-pressure index:

low/variable, low/moderate or medium/variable fishing effort.

Areas with low/constant, medium/moderate and high/variable

fishing effort and fishing consistency classes had a medium-pressure

index; and areas with medium/constant, high/moderate and high/

constant fishing effort and fishing consistency classes were classified

as high-pressure index. The pressure index was also collated into

quarters (i.e. January–March, April–June, July–September and

October–December).

(c) Leatherback spatio-temporal susceptibility to
longline fisheries bycatch

In order to assess spatial and temporal variation of leatherback sus-

ceptibility to longline fisheries bycatch, we first selected areas having

a high fishing-pressure index, both annually and for each quarter

separately. We then categorized these areas based on the coincident

annual and seasonal estimates of leatherback turtle density. Areas of

high fishing pressure coincident with high turtle density were classi-

fied as ‘high’ susceptibility, areas of high fishing pressure and

medium turtle density were classified as ‘medium’ susceptibility,

and areas of high fishing pressure and low turtle density were classi-

fied as ‘low’ susceptibility. Maps overlaying areas of leatherback

habitat use with (i) areas having a medium fishing-pressure index

(see electronic supplementary material, figure S6A) or (ii) areas

having a low fishing-pressure index (see electronic supplementary

material, figure S6B) were also generated for comparison.

Data were analysed and mapped using MATLAB (The Math-

Works, MA), the R software package [28] and ArcGIS v. 10.1 and

10.5 (Environmental Systems Research Institute, Redlands, CA).
3. Results
Between 1995 and 2010, 106 turtles were satellite-tracked from

sites throughout the Atlantic Ocean and the southwestern

Indian Ocean (figure 1a) for a duration varying between six

and 713 days (see electronic supplementary material, table S1).

Individuals rarely moved between the Northern and Southern

hemispheres (figure 1a), allowing us to define two regional man-

agement units [29] with some confidence: northern and southern

Atlantic (the latter including turtles from South Africa).

Maps of daily turtle locations revealed that Atlantic leather-

backs use both offshore international waters and coastal

national waters, either seasonally or year-round, leading to a

complex pattern of spatio-temporal habitat use (figure 1b; elec-

tronic supplementary material, figure S1). Turtles used the

exclusive economic zones (EEZs) of 46 out of the 97 (47.0%)

countries bordering the Atlantic Ocean (figure 1b). In the

northern Atlantic, 53.0% of all daily locations were located in

international waters and 47.0% in EEZs (n ¼ 6863 locations

for 65 turtles), compared with 54.5% and 45.5%, respectively,

in the southern Atlantic (n ¼ 5664 locations for 50 turtles).

In the northern Atlantic, despite all breeding being in the

west, high-use areas mainly occurred in the central (25–508 N,

50–308 W) and eastern regions, and in particular in the waters

offshore western Europe, around Cape Verde (year-round)

and around the Azores (October–March). High-use areas also

occurred along the east coast of the USA (April–June and

http://rspb.royalsocietypublishing.org/
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Figure 1. Movements and density distribution of satellite-tracked leatherbacks
and pelagic longline fishing-pressure index in the Atlantic Ocean over 15 years.
(a) Movements of satellite-tracked leatherbacks during their migration in the Atlan-
tic Ocean, between 1995 and 2010. Black lines: movements of females tagged on
the nesting beach (n¼ 93). Grey lines: movements of individuals tagged near pre-
sumed foraging grounds (n ¼ 13; four males, one juvenile and eight females).
Blue dots: deployment from a nesting site. Purple dots: deployment at sea (see
the electronic supplementary material, table S1). Inset: movements of six individ-
uals tagged on their foraging grounds in the southwestern Atlantic. (b) Density of
leatherback daily locations (locations were time-weighted and population-size-
normalized). Three density classes were defined: low, medium and high use.
White pixels represent areas from which tracking data were not received. High-
use areas occurred both in international waters and within the EEZs of 20 countries
(in dark grey) fringing the northern Atlantic (Canada, Cape Verde, Gambia, Guinea
Bissau, France/French Guiana, Mauritania, Portugal/Azores, Senegal, Spain/Can-
aries, Suriname, United States of America, Western Sahara) or the southern
Atlantic (Angola, Argentina, Brazil, Congo, Gabon, Namibia, United Kingdom/
Ascension Island and Uruguay). Dashed grey lines represent the limits of national
EEZs. (c) Fishing-pressure index for the period 1995 – 2009 in the Atlantic Ocean.
This index resulted from the combination of the three fishing-effort classes (see
electronic supplementary material, figure S2B) and the three consistency-in-fish-
ing-effort classes (see electronic supplementary material, figure S3B). This index
had three levels of increasing intensity (low, medium and high; see Material
and methods for more detail). Broken lines represent latitudes 108 N and 108 S.
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October–December) and off Canada (July–December; figure 1b;

electronic supplementary material, figure S1; see also [18,30,31]).

A relatively broad migratory corridor was visible when turtles

departed their nesting sites in French Guiana/Suriname and

their movements overlapped with turtles from Grenada and

Trinidad (July–September; figure 1a,b; electronic supplementary

material, figure S1).

In the southern Atlantic, leatherbacks leaving their nesting

sites in Gabon displayed a narrower range in distribution and

appeared to use a migratory corridor towards the coast of

South America (January–March; see also [12]). Along the

coast of South America, movements of turtles tracked from the

southwestern Atlantic feeding grounds and Brazilian rookeries

overlapped with those from Gabon, resulting in a year-round

high-use area occurring from 208S to 458 S (figure 1a,b; see also

[12,32,33]). Two other high-use areas occurred: one in the equa-

torial central Atlantic (April–September) and one off the west

coast of southern Africa (5–308 S; April–June and October–

December). In this latter area, turtles tracked from Gabon

and South Africa (southwestern Indian Ocean) overlapped

(figure 1a,b; electronic supplementary material, figure S1).

More than four billion hooks were set throughout the

Atlantic by pelagic longline fisheries between 1995 and

2010, equivalent to roughly 730 000 hooks d21. By combining

data on the magnitude (see electronic supplementary

material, figure S2) and inter-annual variation (see electro-

nic supplementary material, figure S3) of fishing effort,

an index of fishing pressure was calculated (figure 1c; see

Material and methods). Fishing pressure was high (63% of

the fished area) year-round in the equatorial central Atlantic

(i.e. between 108 N and 108 S). In the northern Atlantic

(more than 108 N), fishing pressure was high in 28% of the

fished area compared with 43% in the southern Atlantic

(more than 108 S) (figure 1c), with important seasonal

variations in both cases (see electronic supplementary

material, figure S4).

The spatio-temporal susceptibility of leatherbacks to poten-

tial bycatch in longline fisheries was assessed (see Material

and methods) by overlaying areas of leatherback habitat use

(figure 1b) with high-fishing-pressure areas (figure 1c). In the

northern Atlantic, a total of four seasonal high-susceptibility

areas were identified: one in the central northern Atlantic in

international waters, one along the east coast of the United

States of America, and one each in the Canary and Cape Ver-

dean basins (figure 2; electronic supplementary material,

figure S5). These areas partly occurred in the EEZs of eight

countries (Cape Verde, Gambia, Guinea Bissau, Mauritania,

Senegal, Spain/Canaries, United States of America and Wes-

tern Sahara; figure 2; electronic supplementary material,

figure S5). In the southern Atlantic, five high-susceptibility

areas were identified (equatorial: n ¼ 2; temperate: n ¼ 3). A

high-susceptibility area located along the southern coast of

Brazil persisted year-round, while others located in the equator-

ial central Atlantic and the Guinea, Angola and Cape basins

were seasonal (figure 2; electronic supplementary material,

figure S5). One area was located in international waters while

the others partially or entirely occurred in the EEZs of four

countries (Angola, Brazil, Namibia and United Kingdom/

Ascension Island; figure 2; electronic supplementary material,

figure S5). In eight of these nine high-susceptibility areas,

bycatch of leatherbacks by pelagic longline fisheries has been

reported [3,14–16,34,35], the only exception being around

Cape Verde (i.e. area 4, figure 2).

http://rspb.royalsocietypublishing.org/
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4. Discussion
Our results highlight the plasticity and diversity in the

spatio-temporal distribution patterns of Atlantic leatherback

turtles. While several high-use areas identified in this study

have been previously described [12,33,36] or tentatively

suggested [18,30,31], including the migratory corridor off-

shore Gabon (from January to March [12]), the migratory

corridor detected offshore French Guiana (from July to Sep-

tember) is highlighted for the first time. Caution is needed,

however, as no individual track spanned the entire inter-

breeding period and the number of tracks in any specific

area remained limited. There could therefore be high-use

areas as yet undescribed.

This study highlights the transboundary nature of the

leatherback distribution and movements, and the multina-

tional effort that will be necessary to design and monitor

protection measures for this species [4]. Our results specially

warrant consideration by Regional Fisheries Management

Organizations and the need for subsequent actions to limit

the potential for bycatch, by prioritizing specific areas and

times where bycatch of leatherbacks needs to be assessed

and mitigated. We suggest that the high-susceptibility areas

identified in this study be considered as candidates for this

approach. These areas were located in both international

waters and at least 12 national EEZs, and were of varying

size, suggesting that different challenges might be associated

with their management. For instance, the areas located in the

Guinea and Angola basins (see also [15]) were extremely

broad in extent, while the area located around the Canaries
(January–March) or the area off the coast of southwest

Africa (April–September) was much narrower. In broader

areas, gear modifications and alternative fishing practices

[37] may be more effective in reducing bycatch than marine

protected areas or temporary spatial closures. Nonetheless,

the latter have proved to be more successful for spatially

smaller seasonal areas [38] and the Canary Islands, for

instance might be suitable candidates for this strategy [15].

Organizations such as ICCAT might help to coordinate

multinational bycatch mitigation strategies, in particular in

high-susceptibility areas located in international waters [13].

A similar analysis to ours has been undertaken in the Pacific

Ocean [39]. While a direct comparison of the extent and number

of high-susceptibility areas in both oceans is difficult owing to

differing methodologies, it appears that high-susceptible areas

in the Atlantic occur to a greater extent within national EEZs.

High-susceptibility areas located in national EEZs may be

better candidates for management, as mitigation strategies

would need to involve only a single government and a poten-

tially limited number of fleets [13]. However, integrated

approaches to ecosystem management and bycatch mitigation

would need to be developed to balance ecological and economic

objectives over the long term (e.g. [40]). Some nations have

already implemented management actions in their EEZs to

reduce turtle bycatch in pelagic longlines. Yet few or no regu-

lations are in place in many parts of the Atlantic Ocean, and

regulations are particularly lacking in many parts of the

southern Atlantic where, according to our study, the majority

of high-susceptibility areas might occur.
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In the Atlantic Ocean, leatherback turtles travel and forage

at varying depths depending on local oceanographic con-

ditions and vertical prey distribution [18,41,42]. They spend

the majority of their time, however, in the upper 200 m [43].

This flexible diving behaviour suggests that leatherback tur-

tles are likely to encounter pelagic longlines throughout the

Atlantic, whether they are predominantly engaged in fora-

ging or post-nesting migration. Our analysis therefore did

not take the behavioural states of the tracked turtles (i.e. fora-

ging versus travelling) into account. In addition, leatherbacks

incidentally captured by longlines often get entangled in the

lines themselves [44,45], reinforcing that interactions can

potentially happen anywhere in the upper water column

(where the longlines and associated components are found),

and not only at the depths (where hooks remain during

soak time).

Globally, wider availability of bycatch rates, in combi-

nation with increased transparency and stricter rules for the

reporting of bycatch and fishing effort by all fisheries, would

greatly help in the assessment of bycatch risks and the

design of effective mitigation for species of conservation con-

cern. Besides pelagic longline fisheries, other fisheries

employing different gear, such as gillnet and trawl fisheries,

can also have high leatherback turtle bycatch rates [3].

Fishing-effort datasets at the scale of the Atlantic and over

the 15-year period considered in this study are, however,

only available for pelagic longline fisheries. The primary

goal of our analysis was to identify the areas and seasons

of highest susceptibility to turtle bycatch. We therefore chose

to focus our analysis on the pelagic longline fishery owing

to its ubiquity throughout the Atlantic, its known poten-

tial to affect leatherback populations [16] and its uniqueness

regarding data availability.

While our study was successful in describing specific areas

and seasons where bycatch susceptibility is high, a finer tem-

poral and spatial resolution of fishing-effort data could

undoubtedly enhance our findings. It should also be noted

that the existence of illegal, unreported and unregulated (IUU)

fishing is another important factor, which has not yet been

reliably assessed (e.g. [46]). Additionally, the impact of coastal

fisheries, even though difficult to quantitatively assess, must

not be overlooked, particularly in the Atlantic, where leather-

backs use coastal and near-coastal areas (e.g. [47]).

This study offers clear pathways forward to improve the

conservation status of this iconic species. The collaboration of

many data providers, facilitated by the use of the online data

warehouse STAT [21], has allowed the assembly of this tracking

dataset for Atlantic leatherbacks to unprecedented magnitude.

Additional tagging efforts, targeting specific sex and age

classes, and filling geographic gaps of known foraging and

breeding hotspots (e.g. [48,49]), remain important to further

improve the understanding of leatherback habitat use and
bycatch susceptibility. However, significant efforts are urgently

needed to bridge the gap between scientists and the fishing

industry to ensure that these and future findings are rapidly

progressed into policy.
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guay, D. del Bene (PROFAUMA), Z. Di Rienzo and colleagues
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Satellite-tracked movements of female Dermochelys
coriacea from southeastern Brazil. Endang. Species
Res. 15, 77 – 86. (doi:10.3354/esr00359)
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