35 research outputs found

    A Small Molecule Inhibitor of PDK1/PLC gamma 1 Interaction Blocks Breast and Melanoma Cancer Cell Invasion

    Get PDF
    Strong evidence suggests that phospholipase Cγ1 (PLCγ1) is a suitable target to counteract tumourigenesis and metastasis dissemination. We recently identified a novel signalling pathway required for PLCγ1 activation which involves formation of a protein complex with 3-phosphoinositide-dependent protein kinase 1 (PDK1). In an effort to define novel strategies to inhibit PLCγ1-dependent signals we tested here whether a newly identified and highly specific PDK1 inhibitor, 2-O-benzyl-myo-inositol 1,3,4,5,6-pentakisphosphate (2-O-Bn-InsP5), could affect PDK1/PLCγ1 interaction and impair PLCγ1-dependent cellular functions in cancer cells. Here, we demonstrate that 2-O-Bn-InsP5 interacts specifically with the pleckstrin homology domain of PDK1 and impairs formation of a PDK1/PLCγ1 complex. 2-O-Bn-InsP5 is able to inhibit the epidermal growth factor-induced PLCγ1 phosphorylation and activity, ultimately resulting in impaired cancer cell migration and invasion. Importantly, we report that 2-O-Bn-InsP5 inhibits cancer cell dissemination in zebrafish xenotransplants. This work demonstrates that the PDK1/PLCγ1 complex is a potential therapeutic target to prevent metastasis and it identifies 2-O-Bn-InsP5 as a leading compound for development of anti-metastatic drugs

    Expression of p89c-Mybex9b, an alternatively spliced form of c-Myb, is required for proliferation and survival of p210BCR/ABL-expressing cells

    Get PDF
    The c-Myb gene encodes the p75c-Myb isoform and less-abundant proteins generated by alternatively spliced transcripts. Among these, the best known is pc-Mybex9b, which contains 121 additional amino acids between exon 9 and 10, in a domain involved in protein–protein interactions and negative regulation. In hematopoietic cells, expression of pc-Mybex9b accounts for 10–15% of total c-Myb; these levels may be biologically relevant because modest changes in c-Myb expression affects proliferation and survival of leukemic cells and lineage choice and frequency of normal hematopoietic progenitors. In this study, we assessed biochemical activities of pc-Mybex9b and the consequences of perturbing its expression in K562 and primary chronic myeloid leukemia (CML) progenitor cells. Compared with p75c-Myb, pc-Mybex9b is more stable and more effective in transactivating Myb-regulated promoters. Ectopic expression of pc-Mybex9b enhanced proliferation and colony formation and reduced imatinib (IM) sensitivity of K562 cells; conversely, specific downregulation of pc-Mybex9b reduced proliferation and colony formation, enhanced IM sensitivity of K562 cells and markedly suppressed colony formation of CML CD34+ cells, without affecting the levels of p75c-Myb. Together, these studies indicate that expression of the low-abundance pc-Mybex9b isoform has an important role for the overall biological effects of c-Myb in BCR/ABL-transformed cells

    Gfi-1 inhibits proliferation and colony formation of p210BCR/ABL-expressing cells via transcriptional repression of STAT 5 and Mcl-1

    No full text
    Expression of the transcription repressor Gfi-1 is required for the maintenance of murine hematopoietic stem cells. In human cells, ectopic expression of Gfi-1 inhibits and RNA interference-mediated Gfi-1 downregulation enhances proliferation and colony formation of p210BCR/ABL expressing cells. To investigate the molecular mechanisms that may explain the effects of perturbing Gfi-1 expression in human cells, Gfi-1-regulated genes were identified by microarray analysis in K562 cells expressing the tamoxifen-regulated Gfi-1-ER protein. STAT 5B and Mcl-1, two genes important for the proliferation and survival of hematopoietic stem cells, were identified as direct and functionally relevant Gfi-1 targets in p210BCR/ABL-transformed cells because: (i) their expression and promoter activity was repressed by Gfi-1 and (ii) when constitutively expressed blocked the proliferation and colony formation inhibitory effects of Gfi-1. Consistent with these findings, genetic or pharmacological inhibition of STAT 5 and/or Mcl-1 markedly suppressed proliferation and colony formation of K562 and CD34+ chronic myelogenous leukemia (CML) cells. Together, these studies suggest that the Gfi-1STAT 5B/Mcl-1 regulatory pathway identified here can be modulated to suppress the proliferation and survival of p210BCR/ABL-transformed cells including CD34+ CML cells

    Impact of a single nucleotide polymorphism in the MDM2 gene on neuroblastoma development and aggressiveness: Results of a pilot study on 239 patients

    Get PDF
    Purpose: MDM2 is a key negative regulator of p53 activity, and a single nucleotide polymorphism (SNP309,T>G change; rs 2279744) in its promoter increases the affinity for the transcription factor SP1, enhancing MDM2 expression. We carried out a pilot study to investigate the effect of this polymorphism on development and behavior of neuroblastoma, an extracranial pediatric tumor with unfrequent genetic inactivation of p53. Experimental Design: We genotyped the MDM2-SNP309 alleles of tumor DNA from 239 neuroblastoma patients and peripheral blood DNA from 237 controls. In 40 of 239 neuroblastomas, the MDM2-SNP309 alleles were also genotyped in peripheral blood DNA. Data were analyzed by two-sided Fisher's exact test, log-rank test, and Kaplan-Meier statistics. Where appropriate, data are reported with 95% confidence intervals (0). Results:The frequency of both the T/G and G/G genotypes or the G/G or T/G genotype only was higher in neuroblastoma DNA samples than in controls: 60.3% (95% CI, 54.1-66.5) versus 47.3% (95% CI, 40.9-53.6), 30.4% (95% CI, 22.4-37.8) versus 15.0% (95% CI, 9.2-20.7), and 52.0% (95% CI, 45.0-59.9) versus 41.9% (95% CI, 35.3-48.5), respectively; Two-Sided Fisher's Exact Test P values were 0.006, 0.003, and 0.048, respectively; Odds ratios were 1.69 (95% CI, 1.18-2.43), 2.45 (95% CI, 1.37-4.39) and 1.51 (95% CI, 1.02-2.22), respectively. A significant association (P = 0.016) between heterozygous (T/G)/homozygous (G/G) genotypes at SNP309 and advanced clinical stages was also shown. Homozygous/heterozygous SNP309 variant carriers had a shorter 5-year overall survival than patients with the wild-type allele (P = 0.046; log-rank test). A shorter overall survival in patients with heterozygous/homozygous SNP309 was also observed in the subgroups with age at diagnosis >1 year and adrenal primary tumor (P = 0.024 and P = 0.014, respectively). Conclusions: Data from this pilot study suggest that the MDM2 G/G and T/G-SNP309 alleles are markers of increased predisposition to tumor development and disease aggressiveness in neuroblastoma. However, additional studies with larger patient cohorts are required for a definitive assessment of the clinical relevance of these data
    corecore