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Abstract Purpose: MDM2 is a key negative regulator of p53 activity, and a single nucleotide polymor-
phism (SNP309,T>G change; rs 2279744) in its promoter increases the affinity for the transcrip-
tion factor SP1, enhancingMDM2 expression.We carried out a pilot study to investigate the effect
of this polymorphism on development and behavior of neuroblastoma, an extracranial pediatric
tumor with unfrequent genetic inactivation of p53.
Experimental Design:We genotyped theMDM2-SNP309 alleles of tumorDNA from 239neu-
roblastoma patients and peripheral blood DNA from 237 controls. In 40 of 239 neuroblastomas,
theMDM2-SNP309 alleleswere also genotyped inperipheral bloodDNA. Datawere analyzedby
two-sided Fisher’s exact test, log-rank test, and Kaplan-Meier statistics.Where appropriate, data
are reported with 95% confidence intervals (CI).
Results:The frequency of both theT/GandG/Ggenotypes or theG/GorT/G genotype only was
higher inneuroblastomaDNA samples than in controls: 60.3% (95%CI, 54.1-66.5) versus 47.3%
(95% CI, 40.9-53.6), 30.4% (95% CI, 22.4-37.8) versus 15.0% (95% CI, 9.2-20.7), and 52.0%
(95% CI, 45.0-59.9) versus 41.9% (95% CI, 35.3-48.5), respectively;Two-Sided Fisher’s Exact
Test P values were 0.006, 0.003, and 0.048, respectively; Odds ratios were 1.69 (95% CI,
1.18-2.43), 2.45 (95% CI, 1.37-4.39) and 1.51 (95% CI, 1.02-2.22), respectively. A significant
association (P = 0.016) between heterozygous (T/G)/homozygous (G/G) genotypes at
SNP309 and advanced clinical stages was also shown. Homozygous/heterozygous SNP309
variant carriers had a shorter 5-year overall survival than patients with the wild-type allele (P =
0.046; log-rank test). A shorter overall survival in patients with heterozygous/homozygous
SNP309 was also observed in the subgroups with age at diagnosis >1year and adrenal primary
tumor (P = 0.024 and P = 0.014, respectively).
Conclusions: Data from this pilot study suggest that the MDM2 G/G and T/G-SNP309 alleles
are markers of increased predisposition to tumor development and disease aggressiveness in
neuroblastoma. However, additional studieswith larger patient cohorts are required for a definitive
assessment of the clinical relevance of these data.
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Neuroblastoma, a tumor arising from neuroectodermal
precursor cells of the neural crest, represents the most common
extracranial solid tumor in children, accounting for 8% to 10%
of all childhood cancers but for f15% of all deaths due to
pediatric malignancies (1). The clinical hallmark of neuroblas-
toma is its heterogeneity: age at diagnosis (2), clinical stage
(based on International Neuroblastoma Staging System; ref. 3),
and tumor histology (4) are the most important factors for
predicting the course of the disease and modulate the treatment
accordingly. Age at diagnosis >1 year, advanced stage (3 and 4),
and unfavorable histology are predictive of adverse outcome,
but the response to treatment in patients with neuroblastoma is
quite variable, probably reflecting differences in biological
characteristics of tumor cells. Several biological markers related
to outcome have been identified and they have further
improved risk stratification. MYCN oncogene amplification
(5, 6), hemizygous deletions of chromosomal region 1p36 (7),
and unbalanced gain of 17q regions (8) are the most common
genomic aberrations in neuroblastoma. MYCN oncogene is
amplified in f20% of cases and represents the most powerful
marker of poor outcome (9). In contrast with other malignan-
cies, only 2% to 3% of neuroblastomas harbor mutations of the
p53 gene (10). p53 is a tumor suppressor gene activated by
cellular stresses such as DNA damage, hypoxia, cold, and heat
shock that, primarily through its transcription activation
function, is involved in many biological processes such as cell
cycle arrest, apoptosis, and cellular senescence (11). Alteration
of such processes has important implications for clinical
behavior and response to treatment. p53 also activates the
transcription of the MDM2 gene that encodes the major
negative regulator of p53, thereby generating a negative
feedback loop that leads to inhibition of p53 activity and
proteasome-dependent protein degradation (12). Different
studies in neuroblastoma cell lines and primary tumors have
shown that the p53/MDM2 pathway is genetically intact, but
that the function of p53 may be attenuated by aberrant
expression/activity of MDM2 (7, 13, 14). In this regard, MDM2
expression can be enhanced by increased MYCN levels in
tumors with MYCN amplification (15), whereas in tumors with
the 1p36 deletion expression of an activator of ARF (alternate
reading frame) (which interacts with MDM2) is reduced (16),
possibly enhancing MDM2 functional levels. In the first intron
of MDM2, there is one of the two gene promoter enhancers
(the other one is in the first exon; ref. 17). In humans, the first
intron consists of a 524-nucleotide segment that includes two
different single nucleotide polymorphisms (SNP; ref. 17). One
of these, the SNP309 (a T>G change at nucleotide 309; rs
2279744), causes a 4-fold increase in the affinity of the
promoter for the transcription factor SP1, resulting in higher
levels of MDM2 mRNA and protein, attenuation of the p53-
regulated pathways, and increased risk for tumorigenesis (18).
Because mutations of the p53 gene are rarely found in
neuroblastoma (10), it is an intriguing possibility that a more
aggressive neuroblastoma might develop in individuals har-
boring MDM2 SNP309 variants that promote functional
inactivation of p53.

Thus, in this pilot study, we assessed the frequency of wild-
type and heterozygous/homozygous SNP309 variants in DNA
obtained from 239 primary untreated neuroblastomas and
correlated the findings with clinical and biological variables
such as age at diagnosis, primary site, clinical stage, and MYCN

amplification. We report here that the frequency of the T/G and
G/G genotypes is higher in DNA samples of neuroblastoma
patients than of control subjects, and that this increased
frequency is associated with advanced clinical stages. Homozy-
gous/heterozygous SNP309 variant carriers appear to have a
shorter cumulative 5-year survival than patients with the wild-
type allele. Moreover, overall survival was also significantly
shorter in hetero/homozygous SNP309 carrier patients with age
at diagnosis >1 year and with adrenal primary tumor.

Materials andMethods

Subjects. Two hundred thirty-nine neuroblastoma Italian patients
were selected for analysis of MDM-SNP309 genotype: their clinical and
biological characteristics are listed in Table 1. Tumor DNA was analyzed
in each patient, whereas peripheral blood DNA was genotyped in 40
cases to confirm that polymorphism frequency did not reflect somatic
mutation. The only selection criteria of neuroblastoma patients were
lack of previous treatments and availability of adequate amount of
DNA. We used tumor DNA because peripheral blood lymphocytes are
not always readily attainable from patients with neuroblastoma.
Institutional written informed consent was obtained from the
neuroblastoma patient’s parents or legal guardians. The study under-
went ethical review and approval according to local institutional
guidelines.

Controls. The MDM2-SNP309 genotyping was also evaluated using
peripheral blood DNA of 237 healthy donors. Control subjects were
anonymoused voluntary blood donors selected during a 5-y period
(2000-2005) at several Northern Italy Blood Centers; their age ranged
from 25 to 60 y (median, 45 y) and they were sex matched to the
neuroblastoma group.

MDM2 genotyping. MDM2 DNA segment including the SNP 309
was amplified by PCR using 150 ng DNA and a pair of forward
(CGGGAGTTCAGGGTAAAGGT) and reverse (AGCAAGTCGGTGCT-
TACCTG) primers that generated a 332-bp DNA product. DNA
amplification was done as follows: 95jC for 45 s, 52jC for 45 s, and
72jC for 45 s for 35 cycles. PCR products were separated by
electrophoresis in 1% agarose gel with ethidium bromide, extracted
by use of a PCR Purification kit (Roche Diagnostics GmbH), and each
fragment sequenced from both ends on a ABI PRISM 377 DNA
Sequencer using the ABI PRISM Big Dye Terminator (PE Biosystem).
Thirty tumor and control DNAs were independently resequenced to
confirm the veracity of the genotype assays.

Statistical analysis. The frequencies of SNP309 were crosstabulated
in neuroblastoma patients versus healthy controls using two-sided
Fisher’s exact test. Ninety-five percent confidence intervals and odds
ratios were also calculated. False-positive report probability (FPRP) was
calculated according to Wacholder et al. (19) using the Wacholder_
FPRP_prototype_spreadsheet available on line. Frequencies of SNP309
in neuroblastoma patients versus known prognostic factors were also
crosstabulated using Fisher’s exact test to evaluate the significance of the
association. Five-year overall survival curves on the basis of SNP309
genotype (homozygous/heterozygous) in all neuroblastoma patients or
in subgroups with known prognostic factors were calculated according
to Kaplan and Meier (20), and the differences were evaluated using log-
rank test. All statistical tests were two-sided and P values of <0.05 were
considered statistically significant. The analyses were carried out using
the software package SPSS 11.0 for Windows (SPSS, Inc.). The Hardy-
Weinberg equilibrium as assessed by m2 test.

Results

Genotype frequency at SNP309 of MDM2. The genotype
frequencies in all groups were within the Hardy-Weinberg
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equilibrium. The frequencies of the combined T/G and G/G
SNP309 genotypes as well as those of the homozygous G/G or
heterozygous T/G genotypes only were significantly higher in
tumor DNA samples of patients with neuroblastoma than in
peripheral blood samples of control subjects: 60.3% versus
47.3% (odds ratio, 1.69), 30.4 versus 15.0 (odds ratio, 2.45),
and 52.0 versus 41.9 (odds ratio, 1.51), respectively; two-sided
Fisher’s exact test P values were 0.006, 0.003, and 0.048,
respectively (Table 2). Together, these data suggest that
individuals with high-affinity Sp1 binding site MDM2 gene
variants have an increased risk to develop neuroblastoma. We
tested whether the statistical significance of the higher
occurrence of SNP309 in neuroblastoma patients compared
with healthy controls could be artifactual using the FPRP (19).
We imposed a prior probability of 0.05, a minimum odds ratio
of >1.5, and a threshold level of FPRP of V0.5 as suggested for
rare tumors such as neuroblastoma (19). The choice of a prior
probability of 0.05, which is intermediate between 0.1 (high)
and 0.01 (moderate), was based on the existence of previous
reports supporting the association of SNP309 with conditions
predisposing to early-onset cancer development (17, 21).
According to the FPRP calculation, the association between
SNP309 and neuroblastoma occurrence was noteworthy for
heterozygous + homozygous (FPRP, 0.253) and for homozy-
gous (FPRP, 0.499) versus wild-type. Given the relatively small

size of our cohort, hereafter, the heterozygous + homozygous
SNP309 patients were considered as a single group. We then
assessed whether the increased frequency of the SNP309 was
associated with variables predictive of poor outcome such age at
diagnosis >1 year, adrenal primary site, advanced clinical stage
(3 and 4), MYCN amplification, and chromosome 1p status
(deletion or imbalance). We found a significant association (P =
0.016; two-sided Fisher’s Exact Test) between heterozygous
(T/G) and homozygous (G/G) variant genotypes at SNP309 and
advanced clinical stage (Table 3). Ninety-five percent confidence
interval of the proportions of SNP309 in the clinical stage
groups considered show a small overlapping (see Table 3),
suggesting caution in the interpretation of these data. A nearly
significant increase in the frequency of heterozygous and
homozygous SNP309 genotypes was observed in patients with
MYCN amplification and 1p deletion or imbalance compared
with those with no abnormality or one abnormality only
(75.0% versus 58.1%; P = 0.068; two-sided Fisher’s Exact Test).

Effect of SNP309 variants on neuroblastoma patients’
survival. Cumulative Kaplan Meier 5-year overall survival in
neuroblastoma patients with mutated SNP309 (T/G and G/G)
was shorter than in those with wild-type (WT) SNP309 (T/T;
P = 0.046; log-rank test; Fig. 1A), suggesting that, in its
homozygous or heterozygous form, the SNP309 might be a
novel indicator of poor outcome in neuroblastoma. Then, we
investigated the effect on overall survival of the SNP309
genotype in subgroups of patients selected according to
variables such as age at diagnosis, primary site, clinical stage,
MYCN amplification, and 1p deletion or imbalance. As
expected, the strongest prognostic indicators are highly
significant predictors of survival (Supplementary Table S1).
The heterozygous/homozygous SNP309 genotype was associ-
ated with a statistically significant further decrease in overall
survival in the subgroup of patients with age at diagnosis >1
year (P = 0.024; log-rank test; Fig. 1B). Moreover, a decrease in
survival was observed in the subgroup of patients with adrenal
primary tumor (P = 0.014; log-rank test; Fig. 1C). Although the
test did not reach statistical significance, we also observed a
trend for a shorter survival in patients harboring the heterozy-
gous/homozygous SNP309 genotype in the subgroups with
MYCN amplification, 1p deletion or imbalance, or advanced
stage (Table 4). Together, these results suggest that in patients
with neuroblastoma, the presence of the heterozygous/homo-
zygous SNP309 is a marker of poor outcome.

Discussion

Because the original report that a polymorphism in the
MDM2 promoter (SNP309) attenuates the p53 tumor suppres-
sor pathway and accelerates tumor formation in humans (18),

Table 2. SNP309 frequency in neuroblastoma patients and in unaffected controls

Unaffected controls Neuroblastoma pts P (two-sided) Odds ratio (95% CI)

No % (95% CI) No % (95% CI)

Heterozygous + homozygous vs WT 112 47.3% (40.9-53.6) 144 60.3% (54.1-66.5) 0.006 1.69 (1.18-2.43)
Homozygous vs WT 22 15.0% (9.2-20.7) 41 30.4% (22.4-37.8) 0.003 2.45 (1.37-4.39)
Heterozygous vs WT 90 41.9% (35.3-48.5) 103 52.0% (45.0-59.9) 0.048 1.51 (1.02-2.22)

Abbreviations: 95% CI, 95% confidence interval; pts, patients.

Table 1. Clinical and biological features of
neuroblastoma patients

Factor Levels No. (%)

SNP309 WT 95 (39.75%)
Heterozygous 103 (43.10%)
Homozygous 41 (17.15%)

Total 239
Stage 1 40 (17.02%)

2 28 (11.91%)
3 47 (20.00%)
4 109 (46.38%)
4S 11 (4.68%)
Total 235

MYCN Nonamplified 176 (74.26%)
Amplified 61 (25.74%)
Total 237

Age V1 y 87 (36.40%)
>1 y 147 (61.50%)
Total 234

Site Extra-adrenal 117 (52.94%)
Adrenal 104 (47.06%)
Total 221

1pdel/imbalance WT 128 (64,00%)
Deletion/imbalance 72 (36,00%)

Total 200
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there has been considerable interest in assessing whether these
findings were reproducible in different types of malignancies
from distinct geographic areas.

Previous studies have reported a statistically significant
association of the MDM2 SNP309 G/G variant genotype with
poor survival in renal carcinoma (22), gastric carcinoma (23),
and esophageal carcinoma (24). In colorectal carcinoma (21)
and soft tissue sarcomas (25), a correlation between the
homozygous/heterozygous SNP309 status and the timing of
cancer onset has been described, although such association
has not been observed in other studies (26, 27). The reasons
for these discrepancies may involve differences in metho-
dology between studies (laboratory and statistical analyses,
patients and controls selection), and/or true geographic and
ethnic variations. In our study conducted in a cohort of Italian
neuroblastoma patients and control subjects, we found that
the MDM2 SNP309 genotype (G/G and T/G) affects tumor
development and aggressiveness. Because inactivating p53
mutations are rarely found in neuroblastoma, the possibility
that tumors with mutant alleles at the MDM2 SNP309 can
express higher MDM2 levels is an attractive mechanism for
functional inactivation of p53. In neuroblastoma, important
mechanisms of increased MDM2 expression/activity are
MYCN amplification and 1p36 deletion (15, 16). In these
cases, as well as in cases with additional not yet identified
mechanisms of increased MDM2 expression/activity (28), the
presence of the homozygous/heterozygous SNP309 is likely to
further strengthen p53 inhibition, thus accentuating the
consequences of p53 functional inactivation for the neuro-
blastoma cell phenotype.

Although not statistically significant, the increased frequen-
cy of the homozygous/heterozygous SNP309 in DNA samples
from patients with MYCN amplification and 1p36 deletion/
imbalance is intriguing. Because both genetic abnormalities
and mutant MDM2 SNP309 may have similar effects on

MDM2 expression/activity, their increased association in
neuroblastoma samples may seem counterintuitive. One
possible explanation is that individuals with homozygous/
heterozygous MDM2 SNP309 are more prone to genomic
instability as suggested by the occurrence of genetic
alterations including MYCN amplification in p53-deficient
mouse models (29, 30).

Fig. 1. Kaplan-Meier 5-y cumulative overall survival on the basis of SNP309
genotype (homozygous/heterozygous) in all neuroblastoma patients (A),
or in the subgroup with age >1y (B), or with adrenal primary tumor (C).
Solid line, wild-type SNP309; dashed line, homozygous/heterozygous SNP309.

Table 3. SNP 309 frequency (homozygous +
heterozygous) within subgroups of neuroblastoma
patients

Factor
(two-sided)

SNP309 mutant* P

No % (95% CI)

Stage 1-2-4S 39 49.4 (38.3-60.4) 0.016
3-4 103 66.0 (58.6-73.4)

MYCN Nonamplified 103 58.5 (51.2-65.8) 0.365 (n.s.)
Amplified 40 65.6 (53.7-77.5)

Age V1 y 49 56.3 (45.9-66.7) 0.407 (n.s.)
>1 y 92 62.6 (54.8-70.4)

Site Extra-adrenal 71 60.7 (51.8-69.5) 0.99 (n.s.)
Adrenal 64 61.5 (52.2-70.9)

1pmutc Absent 74 57.8 (49.2-66.4) 0.175 (n.s.)
Present 49 68.1 (57.3-78.9)

MYCN amp
or 1pmut

or neither 93 58.5 (50.8-66.2) 0.068 (n.s.)
MYCN amp
and 1pmut

30 75.0 (61.6-88.4)

Abbreviation: n.s., not significant.
*Homozygous + heterozygous.
c1p deletion or imbalance.
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In summary, this study suggests that mutant variants of
MDM2 SNP309 have an adverse effect on neuroblastoma
development and clinical behavior, and that MDM2 SNP309
genotyping may contribute to stratification of patients into risk
class and, perhaps, have a role in prediction of therapeutic
response. Although this study was carried out in a relatively
large cohort of neuroblastoma patients (considering the rarity
of this tumor), other confirmatory reports are necessary to
strengthen the prognostic value of SNP309 in neuroblastoma.
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Table 4. Effect of SNP309 (homozygous and heterozygous) on 5-y survival of NB patients in subgroups
defined by known prognostic factors

Prognostic factor Levels SNP 309 No of events (death) % Survival P*

All WT 14 77.06 0.046
Mutc 39 52.51

Stage 1-2-4S WT 1 96.55 0.47 (n.s.)
Mut 3 87.92

3-4 WT 13 62.05 0.15 (n.s.)
Mut 36 31.87

MYCN Nonamplified WT 8 84.54 0.21 (n.s.)
Mut 21 63.83

Amplified WT 6 40.00 0.14 (n.s.)
Mut 17 11.57

Age V1 y WT 2 92.53 0.95 (n.s.)
Mut 3 89.74

>1 y WT 12 65.99 0.024
Mut 36 29.55

Site Extra-adrenal WT 8 74.91 0.62 (n.s.)
Mut 16 61.24

Adrenal WT 5 80.34 0.014
Mut 23 44.09

1p status WT WT 3 92.05 0.09 (n.s.)
Mut 11 74.96

1pmutb WT 6 52.65 0.29 (n.s.)
Mut 20 36.08

NOTE: Calculated according to Kaplan Meier.
*Log-rank test.
cHomozygous + heterozygous.
b1p deletion or imbalance.
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