5,244 research outputs found

    Thermodynamic study of racemic ibuprofen separation by liquid chromatography using cellulose-based stationary phase

    Get PDF
    Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID), also known for its significant antipyretic and analgesic properties. This chiral drug is commercialized in racemic form; however, only S-(+)-ibuprofen has clinical activities. In this paper the effect of temperature change (from 288.15 to 308.15 K) on the ibuprofen resolution was studied. A column ( mm) packed with tris(3,5-dimethylphenylcarbamate) was used to obtain the thermodynamic parameters, such as enthalpy change (), entropy change (), variation enthalpy change (), variation entropy change (), and isoenantioselective temperature (). The mobile phase was a combination of hexane (99%), isopropyl alcohol (1%), and TFA (0.1%), as an additive. The conditions led to a selectivity of 1.20 and resolution of 4.55. The first peak, R-(−)-ibuprofen, presented an enthalpy change of 7.21 kJ/mol and entropy change of 42.88 kJ/K·mol; the last peak, S-(+)-ibuprofen, has an enthalpy change of 8.76 kJ/mol and 49.40 kJ/K·mol of entropy change2016CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQsem informaçã

    Chiral gauge theories and anomalies in the Wilson renormalization group approach

    Get PDF
    We extend the Wilson renormalization group (RG) formulation to chiral gauge theories and show that local gauge symmetry can be implemented by a suitable choice of the RG flow boundary conditions. Since the space-time dimension is four, there is no ambiguity in handling the matrix \g_5 and left and right fermions are not coupled. As a result the ultraviolet action contains all possible globally chiral invariant interactions. Nevertheless, the correct chiral anomaly is reproduced.Comment: 16 pages, 4 figures, LaTex, uses epsfig, amssym

    Dimensional renormalization of Yukawa theories wia Wilsonian methods

    Get PDF
    In the 't Hooft-Veltman dimensional regularization scheme it is necessary to introduce finite counterterms to satisfy chiral Ward identities. It is a non-trivial task to evaluate these counterterms even at two loops. We suggest the use of Wilsonian exact renormalization group techniques to reduce the computation of these counterterms to simple master integrals. We illustrate this method by a detailed study of a generic Yukawa model with massless fermions at two loops.Comment: 32 pages, 9 figures, revised version: minor errors corrected, a reference adde

    On the Nonabelian Aharonov Bohm Scattering of Spinless Particles

    Full text link
    The Aharonov Bohm scattering for spinless, isospin 1/2, particles interacting through a nonabelian Chern-Simons field is studied. Starting from the relativistic quantum field theory and using a Coulomb gauge formulation, the one loop renormalization program is implemented. Through the introduction of an intermediary cutoff, separating the regions of high and low integration momentum, the nonrelativistic limit is derived. The next to leading relativistic approximation is also determined. In this approach quantum field theory vacuum polarization effects are automatically incorporated.Comment: 20 pages, 8 figures, revtex. Misspelled reference corrected and new references adde

    Role of the equilibrium size of Kadanoff blocks in the loop-expansion technique

    Get PDF
    A method developed by the present authors in a previous paper [Phys. Rev. E 57, 2594 (1998)] leads to the introduction of the equilibrium size of the Kadanoff blocks as a useful tool to approach the critical properties of the φ4 model. The present paper aims to elucidate the role of the equilibrium size of the Kadanoff blocks in the loop-expansion technique currently used in the field-theoretic renormalization. While the standard results are readily obtained, aspects emerge that help clarify the true nature of the smallness parameter in the loop-expansion technique

    The FLUKA code for space applications: recent developments.

    Get PDF
    The FLUKA Monte Carlo transport code is widely used for fundamental research, radioprotection and dosimetry, hybrid nuclear energy system and cosmic ray calculations. The validity of its physical models has been benchmarked against a variety of experimental data over a wide range of energies, ranging from accelerator data to cosmic ray showers in the earth atmosphere. The code is presently undergoing several developments in order to better fit the needs of space applications. The generation of particle spectra according to up-to-date cosmic ray data as well as the effect of the solar and geomagnetic modulation have been implemented and already successfully applied to a variety of problems. The implementation of suitable models for heavy ion nuclear interactions has reached an operational stage. At medium/high energy FLUKA is using the DPMJET model. The major task of incorporating heavy ion interactions from a few GeV/n down to the threshold for inelastic collisions is also progressing and promising results have been obtained using a modified version of the RQMD-2.4 code. This interim solution is now fully operational, while waiting for the development of new models based on the FLUKA hadron-nucleus interaction code, a newly developed QMD code, and the implementation of the Boltzmann master equation theory for low energy ion interactions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved

    The application of FLUKA to dosimetry and radiation therapy

    Get PDF
    The FLUKA Monte Carlo code has been evolving over the last several decades and is now widely used for radiation shielding calculations. In order to facilitate the use of FLUKA in dosimetry and therapy applications, supporting software has been developed to allow the direct conversion of the output files from standard CT-scans directly into a voxel geometry for transport within FLUKA. Since the CT-scan information essentially contains only the electron density information over the scanned volume, one needs the specific compositions for each voxel individually. We present here the results of a simple algorithm to assign tissues in the human body to one of four categories: soft-tissue, hard-bone, trabecular-bone and porous-lung. In addition, we explore the problem of the pathlength distributions in porous media such as trabecular bone. A mechanism will be implemented within FLUKA to allow for variable multipal fixed density materials to accommodate the pathlength distributions discovere

    Turbulent flow as a cause for underestimating coronary flow reserve measured by Doppler guide wire

    Get PDF
    BACKGROUND: Doppler-tipped coronary guide-wires (FW) are well-established tools in interventional cardiology to quantitatively analyze coronary blood flow. Doppler wires are used to measure the coronary flow velocity reserve (CFVR). The CFVR remains reduced in some patients despite anatomically successful coronary angioplasty. It was the aim of our study to test the influence of changes in flow profile on the validity of intra-coronary Doppler flow velocity measurements in vitro. It is still unclear whether turbulent flow in coronary arteries is of importance for physiologic studies in vivo. METHODS: We perfused glass pipes of defined inner diameters (1.5 – 5.5 mm) with heparinized blood in a pulsatile flow model. Laminar and turbulent flow profiles were achieved by varying the flow velocity. The average peak velocity (APV) was recorded using 0.014 inch FW. Flow velocity measurements were also performed in 75 patients during coronary angiography. Coronary hyperemia was induced by intra-coronary injection of adenosine. The APV maximum was taken for further analysis. The mean luminal diameter of the coronary artery at the region of flow velocity measurement was calculated by quantitative angiography in two orthogonal planes. RESULTS: In vitro, the measured APV multiplied with the luminal area revealed a significant correlation to the given perfusion volumes in all diameters under laminar flow conditions (r(2 )> 0.85). Above a critical Reynolds number of 500 – indicating turbulent flow – the volume calculation derived by FW velocity measurement underestimated the actual rate of perfusion by up to 22.5 % (13 ± 4.6 %). In vivo, the hyperemic APV was measured irrespectively of the inherent deviation towards lower velocities. In 15 of 75 patients (20%) the maximum APV exceeded the velocity of the critical Reynolds number determined by the in vitro experiments. CONCLUSION: Doppler guide wires are a valid tool for exact measurement of coronary flow velocity below a critical Reynolds number of 500. Reaching a coronary flow velocity above the velocity of the critical Reynolds number may result in an underestimation of the CFVR caused by turbulent flow. This underestimation of the flow velocity may reach up to 22.5 % compared to the actual volumetric flow. Cardiologists should consider this phenomena in at least 20 % of patients when measuring CFVR for clinical decision making

    Infra-Red Asymptotic Dynamics of Gauge Invariant Charged Fields: QED versus QCD

    Get PDF
    The freedom one has in constructing locally gauge invariant charged fields in gauge theories is analyzed in full detail and exploited to construct, in QED, an electron field whose two-point function W(p), up to the fourth order in the coupling constant, is normalized with on-shell normalization conditions and is, nonetheless, infra-red finite; as a consequence the radiative corrections vanish on the mass shell p2=Ό2p^2=\mu^2 and the free field singularity is dominant, although, in contrast to quantum field theories with mass gap, the eigenvalue Ό2\mu^2 of the mass operator is not isolated. The same construction, carried out for the quark in QCD, is not sufficient for cancellation of infra-red divergences to take place in the fourth order. The latter divergences, however, satisfy a simple factorization equation. We speculate on the scenario that could be drawn about infra-red asymptotic dynamics of QCD, should this factorization equation be true in any order of perturbation theory.Comment: 30 pages, RevTex, 8 figures included using graphic
    • 

    corecore