30,155 research outputs found
How to squeeze the toothpaste back into the tube
We consider "bridges" for the simple exclusion process on Z, either symmetric
or asymmetric, in which particles jump to the right at rate p and to the left
at rate 1-p. The initial state O has all negative sites occupied and all
non-negative sites empty. We study the probability that the process is again in
state O at time t, and the behaviour of the process on [0,t] conditioned on
being in state O at time t. In the case p=1/2, we find that such a bridge
typically goes a distance of order t (in the sense of graph distance) from the
initial state. For the asymmetric systems, we note an interesting duality which
shows that bridges with parameters p and 1-p have the same distribution; the
maximal distance of the process from the original state behaves like c(p)log(t)
for some constant c(p) depending on p. (For p>1/2, the front particle therefore
travels much less far than the bridge of the corresponding random walk, even
though in the unconditioned process the path of the front particle dominates a
random walk.) We mention various further questions.Comment: 15 page
Therapeutic and educational objectives in robot assisted play for children with autism
“This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.” DOI: 10.1109/ROMAN.2009.5326251This article is a methodological paper that describes the therapeutic and educational objectives that were identified during the design process of a robot aimed at robot assisted play. The work described in this paper is part of the IROMEC project (Interactive Robotic Social Mediators as Companions) that recognizes the important role of play in child development and targets children who are prevented from or inhibited in playing. The project investigates the role of an interactive, autonomous robotic toy in therapy and education for children with special needs. This paper specifically addresses the therapeutic and educational objectives related to children with autism. In recent years, robots have already been used to teach basic social interaction skills to children with autism. The added value of the IROMEC robot is that play scenarios have been developed taking children's specific strengths and needs into consideration and covering a wide range of objectives in children's development areas (sensory, communicational and interaction, motor, cognitive and social and emotional). The paper describes children's developmental areas and illustrates how different experiences and interactions with the IROMEC robot are designed to target objectives in these areas
Optimal Dynamic Procurement Policies for a Storable Commodity with L\'evy Prices and Convex Holding Costs
In this paper we study a continuous time stochastic inventory model for a
commodity traded in the spot market and whose supply purchase is affected by
price and demand uncertainty. A firm aims at meeting a random demand of the
commodity at a random time by maximizing total expected profits. We model the
firm's optimal procurement problem as a singular stochastic control problem in
which controls are nondecreasing processes and represent the cumulative
investment made by the firm in the spot market (a so-called stochastic
"monotone follower problem"). We assume a general exponential L\'evy process
for the commodity's spot price, rather than the commonly used geometric
Brownian motion, and general convex holding costs.
We obtain necessary and sufficient first order conditions for optimality and
we provide the optimal procurement policy in terms of a "base inventory"
process; that is, a minimal time-dependent desirable inventory level that the
firm's manager must reach at any time. In particular, in the case of linear
holding costs and exponentially distributed demand, we are also able to obtain
the explicit analytic form of the optimal policy and a probabilistic
representation of the optimal revenue. The paper is completed by some computer
drawings of the optimal inventory when spot prices are given by a geometric
Brownian motion and by an exponential jump-diffusion process. In the first case
we also make a numerical comparison between the value function and the revenue
associated to the classical static "newsvendor" strategy.Comment: 28 pages, 3 figures; improved presentation, added new results and
section
The effect of ram pressure on the star formation, mass distribution and morphology of galaxies
We investigate the dependence of star formation and the distribution of the
components of galaxies on the strength of ram pressure. Several mock
observations in X-ray, H and HI wavelength for different ram-pressure
scenarios are presented. By applying a combined N-body/hydrodynamic description
(GADGET-2) with radiative cooling and a recipe for star formation and stellar
feedback 12 different ram-pressure stripping scenarios for disc galaxies were
calculated. Special emphasis was put on the gas within the disc and in the
surroundings. All gas particles within the computational domain having the same
mass resolution. The relative velocity was varied from 100 km/s to 1000 km/s in
different surrounding gas densities in the range from to
g/cm. The temperature of the surrounding gas was
initially K. The star formation of a galaxy is enhanced by more
than a magnitude in the simulation with a high ram-pressure (
dyn/cm) in comparison to the same system evolving in isolation. The
enhancement of the star formation depends more on the surrounding gas density
than on the relative velocity. Up to 95% of all newly formed stars can be found
in the wake of the galaxy out to distances of more than 350 kpc behind the
stellar disc. Continuously stars fall back to the old stellar disc, building up
a bulge-like structure. Young stars can be found throughout the stripped wake
with surface densities locally comparable to values in the inner stellar disc.
Ram-pressure stripping can shift the location of star formation from the disc
into the wake on very short timescales. (Abridged)Comment: 19 pages, 25 figures, A&A accepted, high resolution version can be
found at http://astro.uibk.ac.at/~wolfgang/kapferer_rps_galaxies.pd
Interference in interacting quantum dots with spin
We study spectral and transport properties of interacting quantum dots with
spin. Two particular model systems are investigated: Lateral multilevel and two
parallel quantum dots. In both cases different paths through the system can
give rise to interference. We demonstrate that this strengthens the multilevel
Kondo effect for which a simple two-stage mechanism is proposed. In parallel
dots we show under which conditions the peak of an interference-induced orbital
Kondo effect can be split.Comment: 8 pages, 8 figure
Multivalued Fields on the Complex Plane and Conformal Field Theories
In this paper a class of conformal field theories with nonabelian and
discrete group of symmetry is investigated. These theories are realized in
terms of free scalar fields starting from the simple systems and scalar
fields on algebraic curves. The Knizhnik-Zamolodchikov equations for the
conformal blocks can be explicitly solved. Besides of the fact that one obtains
in this way an entire class of theories in which the operators obey a
nonstandard statistics, these systems are interesting in exploring the
connection between statistics and curved space-times, at least in the two
dimensional case.Comment: (revised version), 30 pages + one figure (not included), (requires
harvmac.tex), LMU-TPW 92-1
Neutrino current in a gravitational plane wave collision background
The behaviour of a massless Dirac field on a general spacetime background
representing two colliding gravitational plane waves is discussed in the
Newman-Penrose formalism. The geometrical properties of the neutrino current
are analysed and explicit results are given for the special Ferrari-Ibanez
solution.Comment: 17 pages, 6 Postscript figures, accepted by International Journal of
Modern Physics
- …
