In this paper we study a continuous time stochastic inventory model for a
commodity traded in the spot market and whose supply purchase is affected by
price and demand uncertainty. A firm aims at meeting a random demand of the
commodity at a random time by maximizing total expected profits. We model the
firm's optimal procurement problem as a singular stochastic control problem in
which controls are nondecreasing processes and represent the cumulative
investment made by the firm in the spot market (a so-called stochastic
"monotone follower problem"). We assume a general exponential L\'evy process
for the commodity's spot price, rather than the commonly used geometric
Brownian motion, and general convex holding costs.
We obtain necessary and sufficient first order conditions for optimality and
we provide the optimal procurement policy in terms of a "base inventory"
process; that is, a minimal time-dependent desirable inventory level that the
firm's manager must reach at any time. In particular, in the case of linear
holding costs and exponentially distributed demand, we are also able to obtain
the explicit analytic form of the optimal policy and a probabilistic
representation of the optimal revenue. The paper is completed by some computer
drawings of the optimal inventory when spot prices are given by a geometric
Brownian motion and by an exponential jump-diffusion process. In the first case
we also make a numerical comparison between the value function and the revenue
associated to the classical static "newsvendor" strategy.Comment: 28 pages, 3 figures; improved presentation, added new results and
section