1,272 research outputs found
Probing the stellar initial mass function with high-z supernovae
The first supernovae (SNe) will soon be visible at the edge of the observable universe, revealing the birthplaces of Population III stars. With upcoming near-infrared missions, a broad analysis of the detectability of high-z SNe is paramount. We combine cosmological and radiationtransport simulations, instrument specifications and survey strategies to create synthetic observations of primeval core-collapse (CC), Type IIn and pair-instability (PI) SNe with the James Webb Space Telescope (JWST). We show that a dedicated observational campaign with theJWST can detect up to ~15 PI explosions, ~300 CC SNe, but less than one Type IIn explosion per year, depending on the Population III star formation history. Our synthetic survey also shows that ≈1-2 × 102 SNe detections, depending on the accuracy of the classification, are sufficient to discriminate between a Salpeter and flat mass distribution for high-redshift stars with a confidence level greater than 99.5 per cent. We discuss how the purity of the sample affects our results and how supervised learning methods may help to discriminate between CC and PI SNe. © 2014 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society
Fake supersymmetry versus Hamilton-Jacobi
We explain when the first-order Hamilton-Jacobi equations for black holes
(and domain walls) in (gauged) supergravity, reduce to the usual first-order
equations derived from a fake superpotential. This turns out to be equivalent
to the vanishing of a newly found constant of motion and we illustrate this
with various examples. We show that fake supersymmetry is a necessary condition
for having physically sensible extremal black hole solutions. We furthermore
observe that small black holes become scaling solutions near the horizon. When
combined with fake supersymmetry, this leads to a precise extension of the
attractor mechanism to small black holes: The attractor solution is such that
the scalars move on specific curves, determined by the black hole charges, that
are purely geodesic, although there is a non-zero potential.Comment: 20 pages, v2: Typos corrected, references adde
Growth factor restriction impedes progression of wound healing following cataract surgery: identification of VEGF as a putative therapeutic target
Secondary visual loss occurs in millions of patients due to a wound-healing response, known as posterior capsule opacification (PCO), following cataract surgery. An intraocular lens (IOL) is implanted into residual lens tissue, known as the capsular bag, following cataract removal. Standard IOLs allow the anterior and posterior capsules to become physically connected. This places pressure on the IOL and improves contact with the underlying posterior capsule. New open bag IOL designs separate the anterior capsule and posterior capsules and further reduce PCO incidence. It is hypothesised that this results from reduced cytokine availability due to greater irrigation of the bag. We therefore explored the role of growth factor restriction on PCO using human lens cell and tissue culture models. We demonstrate that cytokine dilution, by increasing medium volume, significantly reduced cell coverage in both closed and open capsular bag models. This coincided with reduced cell density and myofibroblast formation. A screen of 27 cytokines identified nine candidates whose expression profile correlated with growth. In particular, VEGF was found to regulate cell survival, growth and myofibroblast formation. VEGF provides a therapeutic target to further manage PCO development and will yield best results when used in conjunction with open bag IOL designs
Kerr-Newman Black Hole Thermodynamical State Space: Blockwise Coordinates
A coordinate system that blockwise-simplifies the Kerr-Newman black hole's
thermodynamical state space Ruppeiner metric geometry is constructed, with
discussion of the limiting cases corresponding to simpler black holes. It is
deduced that one of the three conformal Killing vectors of the
Reissner-Nordstrom and Kerr cases (whose thermodynamical state space metrics
are 2 by 2 and conformally flat) survives generalization to the Kerr-Newman
case's 3 by 3 thermodynamical state space metric.Comment: 4 pages incl 2 figs. Accepted by Gen. Rel. Grav. Replaced with
Accepted version (minor corrections
Deep Inelastic Scattering in Conformal QCD
We consider the Regge limit of a CFT correlation function of two vector and
two scalar operators, as appropriate to study small-x deep inelastic scattering
in N=4 SYM or in QCD assuming approximate conformal symmetry. After clarifying
the nature of the Regge limit for a CFT correlator, we use its conformal
partial wave expansion to obtain an impact parameter representation encoding
the exchange of a spin j Reggeon for any value of the coupling constant. The
CFT impact parameter space is the three-dimensional hyperbolic space H3, which
is the impact parameter space for high energy scattering in the dual AdS space.
We determine the small-x structure functions associated to the exchange of a
Reggeon. We discuss unitarization from the point of view of scattering in AdS
and comment on the validity of the eikonal approximation.
We then focus on the weak coupling limit of the theory where the amplitude is
dominated by the exchange of the BFKL pomeron. Conformal invariance fixes the
form of the vector impact factor and its decomposition in transverse spin 0 and
spin 2 components. Our formalism reproduces exactly the general results predict
by the Regge theory, both for a scalar target and for gamma*-gamma* scattering.
We compute current impact factors for the specific examples of N=4 SYM and QCD,
obtaining very simple results. In the case of the R-current of N=4 SYM, we show
that the transverse spin 2 component vanishes. We conjecture that the impact
factors of all chiral primary operators of N=4 SYM only have components with 0
transverse spin.Comment: 44+16 pages, 7 figures. Some correction
Octonionic black holes
Using algebraic tools inspired by the study of nilpotent orbits in simple Lie
algebras, we obtain a large class of solutions describing interacting non-BPS
black holes in N=8 supergravity, which depend on 44 harmonic functions. For
this purpose, we consider a truncation E6(6) / Sp(8,R) of the non-linear sigma
model describing stationary solutions of the theory, which permits a reduction
of algebraic computations to the multiplication of 27 by 27 matrices. The lift
to N=8 supergravity is then carried out without loss of information by using a
pertinent representation of the moduli parametrizing E7(7) / SU(8) in terms of
complex valued Hermitian matrices over the split octonions, which generalise
the projective coordinates of exceptional special Kaehler manifolds. We extract
the electromagnetic charges, mass and angular momenta of the solutions, and
exhibit the duality invariance of the black holes distance separations. We
discuss in particular a new type of interaction which appears when interacting
non-BPS black holes are not aligned. Finally we will explain the possible
generalisations toward the description of the most general stationary black
hole solutions of N=8 supergravity.Comment: 90 pages, Corrected version for publication in JHE
Ectoplasm with an Edge
The construction of supersymmetric invariant actions on a spacetime manifold
with a boundary is carried out using the "ectoplasm" formalism for the
construction of closed forms in superspace. Non-trivial actions are obtained
from the pull-backs to the bosonic bodies of closed but non-exact forms in
superspace; finding supersymmetric invariants thus becomes a cohomology
problem. For a spacetime with a boundary, the appropriate mathematical language
changes to relative cohomology, which we use to give a general formulation of
off-shell supersymmetric invariants in the presence of boundaries. We also
relate this construction to the superembedding formalism for the construction
of brane actions, and we give examples with bulk spacetimes of dimension 3, 4
and 5. The closed superform in the 5D example needs to be constructed as a
Chern-Simons type of invariant, obtained from a closed 6-form displaying Weil
triviality.Comment: 25 page
All-mass n-gon integrals in n dimensions
We explore the correspondence between one-loop Feynman integrals and
(hyperbolic) simplicial geometry to describe the "all-mass" case: integrals
with generic external and internal masses. Specifically, we focus on
-particle integrals in exactly space-time dimensions, as these integrals
have particularly nice geometric properties and respect a dual conformal
symmetry. In four dimensions, we leverage this geometric connection to give a
concise dilogarithmic expression for the all-mass box in terms of the
Murakami-Yano formula. In five dimensions, we use a generalized Gauss-Bonnet
theorem to derive a similar dilogarithmic expression for the all-mass pentagon.
We also use the Schl\"afli formula to write down the symbol of these integrals
for all . Finally, we discuss how the geometry behind these formulas depends
on space-time signature, and we gather together many results related to these
integrals from the mathematics and physics literature.Comment: 49 pages, 8 figure
Vascular endothelial growth factor as a non-invasive marker of pulmonary vascular remodeling in patients with bronchitis-type of COPD
BACKGROUND: Several studies have indicated that one of the most potent mediators involved in pulmonary vascular remodeling is vascular endothelial growth factor (VEGF). This study was designed to determine whether airway VEGF level reflects pulmonary vascular remodeling in patients with bronchitis-type of COPD. METHODS: VEGF levels in induced sputum were examined in 23 control subjects (12 non-smokers and 11 ex-smokers) and 29 patients with bronchitis-type of COPD. All bronchitis-type patients performed exercise testing with right heart catheterization. RESULTS: The mean pulmonary arterial pressure (mPAP) and pulmonary vascular resistance (PVR) after exercise were markedly increased in all bronchitis-type patients. However, both parameters after exercise with breathing of oxygen was significantly lower than in those with breathing of room air. To attenuate the effect of hypoxia-induced pulmonary vasoconstriction during exercise, we used the change in mPAP or PVR during exercise with breathing of oxygen as a parameter of pulmonary vascular remodeling. Change in mPAP was significantly correlated with VEGF level in induced sputum from patients with chronic bronchitis (r = 0.73, p = 0.0001). Moreover, change in PVR was also correlated with VEGF level in those patients (r = 0.57, p = 0.003). CONCLUSION: A close correlation between magnitude of pulmonary hypertension with exercise and VEGF level in bronchitis-type patients could be observed. Therefore, these findings suggest the possibility that VEGF level in induced sputum is a non-invasive marker of pulmonary vascular remodeling in patients with bronchitis-type of COPD
Superconformal Flavor Simplified
A simple explanation of the flavor hierarchies can arise if matter fields
interact with a conformal sector and different generations have different
anomalous dimensions under the CFT. However, in the original study by Nelson
and Strassler many supersymmetric models of this type were considered to be
'incalculable' because the R-charges were not sufficiently constrained by the
superpotential. We point out that nearly all such models are calculable with
the use of a-maximization. Utilizing this, we construct the simplest
vector-like flavor models and discuss their viability. A significant constraint
on these models comes from requiring that the visible gauge couplings remain
perturbative throughout the conformal window needed to generate the
hierarchies. However, we find that there is a small class of simple flavor
models that can evade this bound.Comment: 43 pages, 1 figure; V3: small corrections and clarifications,
references adde
- …