66 research outputs found

    Candida glabrata environmental stress response involves Saccharomyces cerevisiae Msn2/4 orthologous transcription factors

    Get PDF
    We determined the genome-wide environmental stress response (ESR) expression profile of Candida glabrata, a human pathogen related to Saccharomyces cerevisiae. Despite different habitats, C. glabrata, S. cerevisiae, Schizosaccharomyces pombe and Candida albicans have a qualitatively similar ESR. We investigate the function of the C. glabrata syntenic orthologues to the ESR transcription factor Msn2. The C. glabrata orthologues CgMsn2 and CgMsn4 contain a motif previously referred to as HD1 (homology domain 1) also present in Msn2 orthologues from fungi closely related to S. cerevisiae. We show that regions including this motif confer stress-regulated intracellular localization when expressed in S. cerevisiae. Site-directed mutagenesis confirms that nuclear export of CgMsn2 in C. glabrata requires an intact HD1. Transcript profiles of CgMsn2/4 mutants and CgMsn2 overexpression strains show that they regulate a part of the CgESR. CgMsn2 complements a S. cerevisiae msn2 null mutant and in stressed C. glabrata cells, rapidly translocates from the cytosol to the nucleus. CgMsn2 is required for full resistance against severe osmotic stress and rapid and full induction of trehalose synthesis genes (TPS1, TPS2). Constitutive activation of CgMsn2 is detrimental for C. glabrata. These results establish an Msn2-regulated general stress response in C. glabrata

    A Model of Bacterial Intestinal Infections in Drosophila melanogaster

    Get PDF
    Serratia marcescens is an entomopathogenic bacterium that opportunistically infects a wide range of hosts, including humans. In a model of septic injury, if directly introduced into the body cavity of Drosophila, this pathogen is insensitive to the host's systemic immune response and kills flies in a day. We find that S. marcescens resistance to the Drosophila immune deficiency (imd)-mediated humoral response requires the bacterial lipopolysaccharide O-antigen. If ingested by Drosophila, bacteria cross the gut and penetrate the body cavity. During this passage, the bacteria can be observed within the cells of the intestinal epithelium. In such an oral infection model, the flies succumb to infection only after 6 days. We demonstrate that two complementary host defense mechanisms act together against such food-borne infection: an antimicrobial response in the intestine that is regulated by the imd pathway and phagocytosis by hemocytes of bacteria that have escaped into the hemolymph. Interestingly, bacteria present in the hemolymph elicit a systemic immune response only when phagocytosis is blocked. Our observations support a model wherein peptidoglycan fragments released during bacterial growth activate the imd pathway and do not back a proposed role for phagocytosis in the immune activation of the fat body. Thanks to the genetic tools available in both host and pathogen, the molecular dissection of the interactions between S. marcescens and Drosophila will provide a useful paradigm for deciphering intestinal pathogenesis

    The fliR gene contributes to the virulence of S. marcescens in a Drosophila intestinal infection model

    Get PDF
    Serratia marcescens is an opportunistic bacterium that infects a wide range of hosts including humans. It is a potent pathogen in a septic injury model of Drosophila melanogaster since a few bacteria directly injected in the body cavity kill the insect within a day. In contrast, flies do not succumb to ingested bacteria for days even though some bacteria cross the intestinal barrier into the hemolymph within hours. The mechanisms by which S. marcescens attacks enterocytes and damages the intestinal epithelium remain uncharacterized. To better understand intestinal infections, we performed a genetic screen for loss of virulence of ingested S. marcescens and identified FliR, a structural component of the flagellum, as a virulence factor. Next, we compared the virulence of two flagellum mutants fliR and flhD in two distinct S. marcescens strains. Both genes are required for S. marcescens to escape the gut lumen into the hemocoel, indicating that the flagellum plays an important role for the passage of bacteria through the intestinal barrier. Unexpectedly, fliR but not flhD is involved in S. marcescens-mediated damages of the intestinal epithelium that ultimately contribute to the demise of the host. Our results therefore suggest a flagellum-independent role for fliR in bacterial virulence

    Relative Roles of the Cellular and Humoral Responses in the Drosophila Host Defense against Three Gram-Positive Bacterial Infections

    Get PDF
    BACKGROUND: Two NF-kappaB signaling pathways, Toll and immune deficiency (imd), are required for survival to bacterial infections in Drosophila. In response to septic injury, these pathways mediate rapid transcriptional activation of distinct sets of effector molecules, including antimicrobial peptides, which are important components of a humoral defense response. However, it is less clear to what extent macrophage-like hemocytes contribute to host defense. METHODOLOGY/PRINCIPAL FINDINGS: In order to dissect the relative importance of humoral and cellular defenses after septic injury with three different gram-positive bacteria (Micrococcus luteus, Enterococcus faecalis, Staphylococcus aureus), we used latex bead pre-injection to ablate macrophage function in flies wildtype or mutant for various Toll and imd pathway components. We found that in all three infection models a compromised phagocytic system impaired fly survival--independently of concomitant Toll or imd pathway activation. Our data failed to confirm a role of the PGRP-SA and GNBP1 Pattern Recognition Receptors for phagocytosis of S. aureus. The Drosophila scavenger receptor Eater mediates the phagocytosis by hemocytes or S2 cells of E. faecalis and S. aureus, but not of M. luteus. In the case of M. luteus and E. faecalis, but not S. aureus, decreased survival due to defective phagocytosis could be compensated for by genetically enhancing the humoral immune response. CONCLUSIONS/SIGNIFICANCE: Our results underscore the fundamental importance of both cellular and humoral mechanisms in Drosophila immunity and shed light on the balance between these two arms of host defense depending on the invading pathogen

    Ubiquitin-Proteasome: Pallbearer Carries the Deceased to the Grave

    Get PDF
    Phagocytosis is a complex process that involves multiple cellular functions. In this issue of Immunity, Silva et al. (2007) report that a protein ubiquitylation complex and the proteasome are required for the clearance of apoptotic cells in Drosophila

    Model organisms in inflammation and cancer

    No full text
    A link between inflammation and cancer was initially made by Rudolf Virchow back in the 19th century. Nowadays many cancers are considered dependent on inflammatory responses to microbial and damaged-self stimuli and both arms of immunity, innate and adaptive, are playing a role in promoting cancer. Moreover, besides environmental factors, opportunistic pathogens contribute to inflammation and cancer. Nevertheless, microbial influence on chronic disease is sometimes difficult to discern, especially in the context of polymicrobial communities, such as those found in the digestive tract. In this light, model organisms provide important insights into immune and growth signals that promote cancer, and suggest therapies that will selectively target potentially harmful microbes or modulate host responses. A number of review and opinion articles in this series address novel aspects and paradigms of the interactions between the microbiota and the host in relation to inflammation and cancer

    La réponse immunitaire chez la Drosophile

    No full text

    Towards a better understanding of intestinal infections (study of host-pathogenic relationships in the model organism Drosophila melanogaster)

    No full text
    Une partie conséquente de mon travail a été d'effectuer un crible génétique en utilisant une bibliothèque de mutants générés par insertion aléatoire de Tn5-Sm, un minitransposon bactérien. Le crible a été réalisé dans un contexte défini: celui de mouches-hôtes auxquelles manquait le gène Eater, lequel code un récepteur de phagocytose (Kocks et al., 2005). Dans ces mouches, l'infection n'est plus contrôlée dans l'hémocoele par les hémocytes et les drosophiles mutantes succombent rapidement à une bactériémie. Plusieurs phénotypes bactériens étaient attendus à l'issue de ce crible. Une première catégorie de phénotype prévisible était une virulence accrue, par exemple si les bactéries mutantes devenaientcapables de traverser plus rapidement ou efficacement la barrière intestinale conséquemment à la perte d'un régulateur négatif. Un deuxième type de phénotype attendu était une virulence atténuée pouvant s'expliquer de plusieurs manières: 1- perte de résistance à l'environnement existant dans le lumen intestinal (enzymes digestives et lysozyme, radicaux libres et peptides antimicrobiens induits au niveau de l'épithélium intestinal dans le cadre d'une réponse immunitaire locale de l'hôte); 2- incapacité à traverser la matrice péritrophique; 3-incapacité à envahir les cellules épithéliales (adhésion, pénétration); 4- incapacité à résister aux défenses intracellulaires potentielles; 5- incapacité à sortir du côté basal des entérocytes 6- incapacité à proliférer dans l'hémolymphe ou perte de la résistance à l'action de la réponse immunitairesystémique qui est, quant à elle, fortement induite en l'absence de phagocytose, laquelle empêche chez les mouches sauvages la prolifération des bactéries ayant traversé la paroi intestinale. [...] Dans le cadre d'une infection intestinale, les mouches sauvages (et imd) succombaient en six jours alors que, de manière surprenante, les mouches mutantes de la voie Toll périssaient plus lentement, une situation opposée à celle du modèle de la piqûre septique. Quelques bactéries sont capables de traverser la paroi intestinale mais sont incapables de proliférer à moins que la réponse cellulaire ait été préalablement bloquée. L'épithélium intestinal apparaissait normal à la dissection et la presque totalité des bactéries ingérées étaient tuées dans l'intestin. Après avoir exclu l'hypothèse d'une toxine sécrétée dans le surnageant des bactéries adsorbées sur le filtre sur lequel viennent se nourrir les mouches, nous avons testé l'hypothèse qu'une suractivation de la réponse immunitaire était à l'origine du décès des mouches. La génétique mettant hors de cause les peptides antimicrobiens, la voie Toll n'étant apparemment pas activée dans l'épithélium intestinal, nous avons alors étudié laréponse oxydative induite par l'ingestion de bactéries (Ha et al., 2009), laquelle est capable de tuer les mouches lorsqu'elle n'est pas régulée correctement. Là-aussi, le résultat s'est avéré négatif. En fin de compte, j'ai pu établir que la mort des mouches était due à un état de famine, confirmé par des mesures des réserves métaboliques. Mes travaux ont permis d'établir un nouveau rôle de la voie Toll dans la résistance à la famine, en présence ou absence d'infection, qui sera peut-être à mettre en relation avec un rôle métabolique de la voie Toll consistant à bloquer la voie de réponse à l'insuline lors d'une infection. En conclusion, mes travaux permettent de mieux comprendre les relations hôte-pathogènequi s'établissent lors d'une infection intestinale.For the systematic study of bacteri al virulence factors, we initially planned to screen the 12,000 mutant strains of the miniTn5-Sm tranposon-induced mutant bank in a wild-type S. marcescens strain Db10. Phagocytosis-deficient eater mutant flies (Kocks et al., 2005) were used in this screen to isolate the bacterial strains mutated for virulence factors and the genes responsible for crossing the gut barrier. In the eater mutant background, flies succumb to septicemia caused by the rapid proliferation of the bacteria in the hemolymph. Out of 1348 mutant strains screened, 58 candidate mutants have been isolated. Only 20% percent of the potential mutant strains displayed an increased virulence indicating that there are very few factor(s) that negatively control the virulence program of the bacterium. The fly survival phenotypes induced by the candidate mutants isolated in the first round of screen were retested. Only those bacterial strains that were consistent with the phenotype were chosen for the molecular identification of the transposon insertion sites using one primer PCR (Karlyshev et al., 2000). Once the genes impaired in each case had been identified, they were knocked off in the S. marcescens Db10 by site specific plasmid insertion mutagenesis. A mutant strain with the transposon inserted into the fliR gene, a component of the type III flagellar protein export system, exhibited attenuation of virulence. The plasmid insertionmutant strain generated to interrupt the gene fliR reproduced the fly survival phenotyp, indicating that the fliR gene is important for the virulence of S. marcescens. The fliR mutants are able to cross the peritrophic matrix, functionally similar to the human mucus. The bacteria were found in the vicinity of the epithelial cells but were not able to efficiently invade the intestinal epithelium as compared to the wild-type strain. Consequently lower titer of FliR mutants was found in the hemolymph. The inefficiency of the FliR mutants to invade cells was also confirmed in ex-vivo assay using insect cells.I thus demonstrated that the fliR gene which is important in the motility apparatus is also required by S. marcescens for the crossing of the epithelial barrier of D. melanogaster.[...]A strong oxidative response is triggered by D. melanogaster in the midgut against commensals and pathogens (Ha et al., 2009). In order to check whether the strong oxidative immune response is eventually killing the flies themselves, hydrogen peroxide was chemically neutralized in the midgut during the S. xylosus A. oral infection. No difference inthe fly survivals was observed with or without neutralization of the oxidative response indicating that over-production of reactive oxygen species (ROS) does not seem to be responsible for the fly death caused by a very low number of bacteria. Flies could efficiently survive to killed bacteria and filtered supernatant solution from overnight bacterial culture indicating that they do not die to the toxins released by the bacteria. Most surprisingly MyD88-, the Toll pathway-, mutant flies were surviving better to S. xylosus A. oral infection. A series of experiments lead us to the finding that the flies actually succumbed to starvation when orally infected with S. xylosus and that the MyD88 is required for the starvation susceptibility in microbiota-mediated manner. In conclusion my work has lead us to the better understanding of the host-bacterial interactions in the intestine.STRASBOURG-Bib.electronique 063 (674829902) / SudocSudocFranceF

    Sensing microbial infections in the Drosophila melanogaster genetic model organism

    No full text
    International audienc
    corecore