2,641 research outputs found

    Local and nonlocal solvable structures in ODEs reduction

    Full text link
    Solvable structures, likewise solvable algebras of local symmetries, can be used to integrate scalar ODEs by quadratures. Solvable structures, however, are particularly suitable for the integration of ODEs with a lack of local symmetries. In fact, under regularity assumptions, any given ODE always admits solvable structures even though finding them in general could be a very difficult task. In practice a noteworthy simplification may come by computing solvable structures which are adapted to some admitted symmetry algebra. In this paper we consider solvable structures adapted to local and nonlocal symmetry algebras of any order (i.e., classical and higher). In particular we introduce the notion of nonlocal solvable structure

    Bayesian parameter estimation in the second LISA Pathfinder Mock Data Challenge

    Get PDF
    A main scientific output of the LISA Pathfinder mission is to provide a noise model that can be extended to the future gravitational wave observatory, LISA. The success of the mission depends thus upon a deep understanding of the instrument, especially the ability to correctly determine the parameters of the underlying noise model. In this work we estimate the parameters of a simplified model of the LISA Technology Package (LTP) instrument. We describe the LTP by means of a closed-loop model that is used to generate the data, both injected signals and noise. Then, parameters are estimated using a Bayesian framework and it is shown that this method reaches the optimal attainable error, the Cramer-Rao bound. We also address an important issue for the mission: how to efficiently combine the results of different experiments to obtain a unique set of parameters describing the instrument.Comment: 14 pages, 4 figures, submitted to PR

    Seismic retrofit of an existing reinforced concrete building with buckling-restrained braces

    Get PDF
    Background: The seismic retrofitting of frame structures using hysteretic dampers is a very effective strategy to mitigate earthquake-induced risks. However, its application in current practice is rather limited since simple and efficient design methods are still lacking, and the more accurate time-history analysis is time-consuming and computationally demanding. Aims: This paper develops and applies a seismic retrofit design method to a complex real case study: An eight-story reinforced concrete residential building equipped with buckling-restrained braces. Methods: The design method permits the peak seismic response to be predicted, as well as the dampers to be added in the structure to obtain a uniform distribution of the ductility demand. For that purpose, a pushover analysis with the first mode load pattern is carried out. The corresponding story pushover curves are first idealized using a degrading trilinear model and then used to define the SDOF (Single Degree-of-Freedom) system equivalent to the RC frame. The SDOF system, equivalent to the damped braces, is designed to meet performance criteria based on a target drift angle. An optimal damper distribution rule is used to distribute the damped braces along the elevation to maximize the use of all dampers and obtain a uniform distribution of the ductility demand. Results: The effectiveness of the seismic retrofit is finally demonstrated by non-linear time-history analysis using a set of earthquake ground motions with various hazard levels. Conclusion: The results proved the design procedure is feasible and effective since it achieves the performance objectives of damage control in structural members and uniform ductility demand in dampers

    Calibrating spectral estimation for the LISA Technology Package with multichannel synthetic noise generation

    Full text link
    The scientific objectives of the Lisa Technology Package (LTP) experiment, on board of the LISA Pathfinder mission, demand for an accurate calibration and validation of the data analysis tools in advance of the mission launch. The levels of confidence required on the mission outcomes can be reached only with an intense activity on synthetically generated data. A flexible procedure allowing the generation of cross-correlated stationary noise time series was set-up. Multi-channel time series with the desired cross correlation behavior can be generated once a model for a multichannel cross-spectral matrix is provided. The core of the procedure is the synthesis of a noise coloring multichannel filter through a frequency-by-frequency eigendecomposition of the model cross-spectral matrix and a Z-domain fit. The common problem of initial transients in noise time series is solved with a proper initialization of the filter recursive equations. The noise generator performances were tested in a two dimensional case study of the LTP dynamics along the two principal channels of the sensing interferometer.Comment: Accepted for publication in Physical Review D (http://prd.aps.org/

    Local Isometric immersions of pseudo-spherical surfaces and evolution equations

    Full text link
    The class of differential equations describing pseudo-spherical surfaces, first introduced by Chern and Tenenblat [3], is characterized by the property that to each solution of a differential equation, within the class, there corresponds a 2-dimensional Riemannian metric of curvature equal to 1-1. The class of differential equations describing pseudo-spherical surfaces carries close ties to the property of complete integrability, as manifested by the existence of infinite hierarchies of conservation laws and associated linear problems. As such, it contains many important known examples of integrable equations, like the sine-Gordon, Liouville and KdV equations. It also gives rise to many new families of integrable equations. The question we address in this paper concerns the local isometric immersion of pseudo-spherical surfaces in E3{\bf E}^{3} from the perspective of the differential equations that give rise to the metrics. Indeed, a classical theorem in the differential geometry of surfaces states that any pseudo-spherical surface can be locally isometrically immersed in E3{\bf E}^{3}. In the case of the sine-Gordon equation, one can derive an expression for the second fundamental form of the immersion that depends only on a jet of finite order of the solution of the pde. A natural question is to know if this remarkable property extends to equations other than the sine-Gordon equation within the class of differential equations describing pseudo-spherical surfaces. In an earlier paper [11], we have shown that this property fails to hold for all other second order equations, except for those belonging to a very special class of evolution equations. In the present paper, we consider a class of evolution equations for u(x,t)u(x,t) of order k3k\geq 3 describing pseudo-spherical surfaces. We show that whenever an isometric immersion in E3{\bf E}^3 exists, depending on a jet of finite order of uu, then the coefficients of the second fundamental forms are functions of the independent variables xx and tt only.Comment: Fields Institute Communications, 2015, Hamiltonian PDEs and Applications, pp.N

    Time domain maximum likelihood parameter estimation in LISA Pathfinder Data Analysis

    Full text link
    LISA is the upcoming space-based Gravitational Wave telescope. LISA Pathfinder, to be launched in the coming years, will prove and verify the detection principle of the fundamental Doppler link of LISA on a flight hardware identical in design to that of LISA. LISA Pathfinder will collect a picture of all noise disturbances possibly affecting LISA, achieving the unprecedented pureness of geodesic motion necessary for the detection of gravitational waves. The first steps of both missions will crucially depend on a very precise calibration of the key system parameters. Moreover, robust parameters estimation is of fundamental importance in the correct assessment of the residual force noise, an essential part of the data processing for LISA. In this paper we present a maximum likelihood parameter estimation technique in time domain being devised for this calibration and show its proficiency on simulated data and validation through Monte Carlo realizations of independent noise runs. We discuss its robustness to non-standard scenarios possibly arising during the real-life mission, as well as its independence to the initial guess and non-gaussianities. Furthermore, we apply the same technique to data produced in mission-like fashion during operational exercises with a realistic simulator provided by ESA.Comment: 16 pages (two columns), 15 figures, 5 tables, submitted to Phys. Rev.

    Parameter estimation in LISA Pathfinder operational exercises

    Get PDF
    The LISA Pathfinder data analysis team has been developing in the last years the infrastructure and methods required to run the mission during flight operations. These are gathered in the LTPDA toolbox, an object oriented MATLAB toolbox that allows all the data analysis functionalities for the mission, while storing the history of all operations performed to the data, thus easing traceability and reproducibility of the analysis. The parameter estimation methods in the toolbox have been applied recently to data sets generated with the OSE (Off-line Simulations Environment), a detailed LISA Pathfinder non-linear simulator that will serve as a reference simulator during mission operations. These operational exercises aim at testing the on-orbit experiments in a realistic environment in terms of software and time constraints. These simulations, so called operational exercises, are the last verification step before translating these experiments into tele-command sequences for the spacecraft, producing therefore very relevant datasets to test our data analysis methods. In this contribution we report the results obtained with three different parameter estimation methods during one of these operational exercises.Comment: 10 pages, 3 figures, prepared for the Proceedings of the 9th Edoardo Amaldi Conference on Gravitational Waves, JPC
    corecore