35 research outputs found

    Functional Evolution of Clustered Aquaporin Genes Reveals Insights into the Oceanic Success of Teleost Eggs

    Get PDF
    Aquaporin-mediated oocyte hydration is considered important for the evolution of pelagic eggs and the radiative success of marine teleosts. However, the molecular regulatory mechanisms controlling this vital process are not fully understood. Here, we analyzed >400 piscine genomes to uncover a previously unknown teleost-specific aquaporin-1 cluster (TSA1C) comprised of tandemly arranged aqp1aa-aqp1ab2-aqp1ab1 genes. Functional evolutionary analysis of the TSA1C reveals a ∌300-million-year history of downstream aqp1ab-type gene loss, neofunctionalization, and subfunctionalization, but with marine species that spawn highly hydrated pelagic eggs almost exclusively retaining at least one of the downstream paralogs. Unexpectedly, one-third of the modern marine euacanthomorph teleosts selectively retain both aqp1ab-type channels and co-evolved protein kinase-mediated phosphorylation sites in the intracellular subdomains together with teleost-specific Ywhaz-like (14-3-3ζ-like) binding proteins for co-operative membrane trafficking regulation. To understand the selective evolutionary advantages of these mechanisms, we show that a two-step regulated channel shunt avoids competitive occupancy of the same plasma membrane space in the oocyte and accelerates hydration. These data suggest that the evolution of the adaptive molecular regulatory features of the TSA1C facilitated the rise of pelagic eggs and their subsequent geodispersal in the oceanic currents.info:eu-repo/semantics/publishedVersio

    Persistence with dual antiplatelet therapy after percutaneous coronary intervention for ST-segment elevation acute coronary syndrome: a population-based cohort study in Catalonia (Spain)

    Full text link
    Objectives: Guidelines recommending 12-month dual antiplatelet therapy (DAPT) in patients with ST-elevation acute coronary syndrome (STEACS) undergoing percutaneous coronary intervention (PCI) were published in year 2012. We aimed to describe the influence of guideline implementation on the trend in 12-month persistence with DAPT between 2010 and 2015 and to evaluate its relationship with DAPT duration regimens recommended at discharge from PCI hospitals. Design: Observational study based on region-wide registry data linked to pharmacy billing data for DAPT follow-up. Setting: All PCI hospitals (10) belonging to the acute myocardial infarction (AMI) code network in Catalonia (Spain). Participants: 10 711 STEACS patients undergoing PCI between 2010 and 2015 were followed up. Primary and secondary outcome measures: Primary outcome was 12-month persistence with DAPT. Calendar year quarter, publication of guidelines, DAPT duration regimen recommended in the hospital discharge report, baseline patient characteristics and significant interactions were included in mixed-effects logistic regression based interrupted time-series models. Results: The proportion of patients on-DAPT at 12 months increased from 58% (56-60) in 2010 to 73% (71-75) in 2015. The rate of 12-month persistence with DAPT significantly increased after the publication of clinical guidelines with a time lag of 1 year (OR=1.20; 95% CI 1.11 to 1.30). A higher risk profile, more extensive and complex coronary disease, use of drug-eluting stents (OR=1.90; 95% CI 1.50 to 2.40) and a 12-month DAPT regimen recommendation at discharge from the PCI hospital (OR=5.76; 95% CI 3.26 to 10.2) were associated with 12-month persistence. Conclusion: Persistence with 12-month DAPT has increased since publication of clinical guidelines. Even though most patients were discharged on DAPT, only 73% with potential indication were on-DAPT 12 months after PCI. A guideline-based recommendation at PCI hospital discharge was highly associated with full persistence with DAPT. Establishing evidence-based, common prescribing criteria across hospitals in the AMI-network would favour adherence and reduce variability

    Exploring the reactivity of bicyclic α-iminophosphonates to access new imidazoline I<inf>2</inf> receptor ligands

    Get PDF
    Recent studies pointed out the modulation of imidazoline I2 receptors (I2-IR) by selective ligands as a putative strategy to face neurodegenerative diseases. Foregoing the classical 2-imidazoline/imidazole-containing I2-IR ligands, we report a family of bicyclic α-iminophosphonates endowed with high affinity and selectivity upon I2-IR and we advanced a representative compound B06 in preclinical phases. In this paper, we describe the synthetic possibilities of bicyclic α-iminophosphonates by exploring its ambivalent reactivity, leading to unprecedented molecules that showed promising activities as I2-IR ligands in human brain tissues and good BBB permeation capabilities. After in silico ADME prediction studies, we assessed the neuroprotective properties of selected compounds and beneficial effect in an in vitro model of Alzheimeƕs and Parkinson's disease. Along with their neuroprotective effect, compounds showed a potent anti-inflammatory response when evaluated in a neuroinflammation cellular model. Moreover, this is the first time that the neuroprotective effects of imidazoline I2-IR ligands in a transgenic Alzheimer's disease Caenorhabditis elegans strain are investigated. Using a thrashing assay, we found a significant cognition improvement in this in vivo model after treatment with the new bicyclic α-phosphoprolines. Therefore, our results confirmed the need of exploring structurally new I2-IR ligands and their potential for therapeutic strategies in neurodegeneration.This work was supported by Ministerio de Ciencia, InnovaciĂłn y Universidades, Agencia Estatal de InvestigaciĂłn (Spain, PID2019-107991RB-I00, PID2022-1380790B-I00), Basque Government (IT-1211-19 and 1512-22), Generalitat de Catalunya (GC) (2021 SGR 00357) and PDC2022-133441-I00 (MCIN/AEI/ 10.13039/501100011033 and by the “European Union NextGenerationEU/PRTR) and by UCM-Santander (PR44/21-29931 to J.A.M.-G.). The project leading to these results has received funding from “la Caixa” Foundation (ID 100010434) under agreement CI18-00002. This activity has received funding from the European Institute of Innovation and Technology (EIT). This body of the European Union receives support from the European Union’s Horizon 2020 research and innovation programme.With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe

    Jardins per a la salut

    Get PDF
    Facultat de FarmĂ cia, Universitat de Barcelona. Ensenyament: Grau de FarmĂ cia. Assignatura: BotĂ nica farmacĂšutica. Curs: 2014-2015. Coordinadors: Joan Simon, CĂšsar BlanchĂ© i Maria Bosch.Els materials que aquĂ­ es presenten sĂłn el recull de les fitxes botĂ niques de 128 espĂšcies presents en el JardĂ­ Ferran Soldevila de l’Edifici HistĂČric de la UB. Els treballs han estat realitzats manera individual per part dels estudiants dels grups M-3 i T-1 de l’assignatura BotĂ nica FarmacĂšutica durant els mesos de febrer a maig del curs 2014-15 com a resultat final del Projecte d’InnovaciĂł Docent «Jardins per a la salut: aprenentatge servei a BotĂ nica farmacĂšutica» (codi 2014PID-UB/054). Tots els treballs s’han dut a terme a travĂ©s de la plataforma de GoogleDocs i han estat tutoritzats pels professors de l’assignatura. L’objectiu principal de l’activitat ha estat fomentar l’aprenentatge autĂČnom i col·laboratiu en BotĂ nica farmacĂšutica. TambĂ© s’ha pretĂšs motivar els estudiants a travĂ©s del retorn de part del seu esforç a la societat a travĂ©s d’una experiĂšncia d’Aprenentatge-Servei, deixant disponible finalment el treball dels estudiants per a poder ser consultable a travĂ©s d’una Web pĂșblica amb la possibilitat de poder-ho fer in-situ en el propi jardĂ­ mitjançant codis QR amb un smartphone

    Neuroprotective Epigenetic Changes Induced by Maternal Treatment with an Inhibitor of Soluble Epoxide Hydrolase Prevents Early Alzheimerâ€Čs Disease Neurodegeneration

    No full text
    Modulation of Alzheimerâ€Čs disease (AD) risk begins early in life. During embryo development and postnatal maturation, the brain receives maternal physiological influences and establishes epigenetic patterns that build its level of resilience to late-life diseases. The soluble epoxide hydrolase inhibitor N-[1-(1-oxopropyl)-4-piperidinyl]-Nâ€Č-[4-(trifluoromethoxy)phenyl] urea (TPPU), reported as ant-inflammatory and neuroprotective against AD pathology in the adult 5XFAD mouse model of AD, was administered to wild-type (WT) female mice mated to heterozygous 5XFAD males during gestation and lactation. Two-month-old 5XFAD male and female offspring of vehicle-treated dams showed memory loss as expected. Remarkably, maternal treatment with TPPU fully prevented memory loss in 5XFAD. TPPU-induced brain epigenetic changes in both WT and 5XFAD mice, modulating global DNA methylation (5-mC) and hydroxymethylation (5-hmC) and reducing the gene expression of some histone deacetylase enzymes (Hdac1 and Hdac2), might be on the basis of the long-term neuroprotection against cognitive impairment and neurodegeneration. In the neuropathological analysis, both WT and 5XFAD offspring of TPPU-treated dams showed lower levels of AD biomarkers of tau hyperphosphorylation and microglia activation (Trem2) than the offspring of vehicle-treated dams. Regarding sex differences, males and females were similarly protected by maternal TPPU, but females showed higher levels of AD risk markers of gliosis and neurodegeneration. Taken together, our results reveal that maternal treatment with TPPU impacts in preventing or delaying memory loss and AD pathology by inducing long-term modifications in the epigenetic machinery and its marks

    La lengua en el ciclo inicial : curso 88-89

    No full text
    Ejemplar fotocopiado, fecha aproximadaEl presente trabajo utiliza como experiencia el cuento de Caperucita Roja para desarrollar, mejorar y enriquecer en el alumno la comprensiĂłn y expresiĂłn oral. Se pretende conseguir que el alumno aumente su vocabulario, realice actividades que combinen la expresiĂłn oral, escrita y plĂĄstica, que realicen dramatizaciones para desarrollar su creatividad y espontaneidad, se hacen actividades artĂ­sticas, fĂ­sicas y matemĂĄticas con la finalidad de conseguir una enseñanza globalizada.MelillaBiblioteca de EducaciĂłn del Ministerio de EducaciĂłn, Cultura y Deporte; Calle San AgustĂ­n 5 -3 Planta; 28014 Madrid; Tel. +34917748000; [email protected]

    Neuroprotective Epigenetic Changes Induced by Maternal Treatment with an Inhibitor of Soluble Epoxide Hydrolase Prevents Early Alzheimer's Disease Neurodegeneration

    Full text link
    Modulation of Alzheimer's disease (AD) risk begins early in life. During embryo development and postnatal maturation, the brain receives maternal physiological influences and establishes epigenetic patterns that build its level of resilience to late-life diseases. The soluble epoxide hydrolase inhibitor N-[1-(1-oxopropyl)-4-piperidinyl]-N'-[4-(trifluoromethoxy)phenyl] urea (TPPU), reported as ant-inflammatory and neuroprotective against AD pathology in the adult 5XFAD mouse model of AD, was administered to wild-type (WT) female mice mated to heterozygous 5XFAD males during gestation and lactation. Two-month-old 5XFAD male and female offspring of vehicle-treated dams showed memory loss as expected. Remarkably, maternal treatment with TPPU fully prevented memory loss in 5XFAD. TPPU-induced brain epigenetic changes in both WT and 5XFAD mice, modulating global DNA methylation (5-mC) and hydroxymethylation (5-hmC) and reducing the gene expression of some histone deacetylase enzymes (Hdac1 and Hdac2), might be on the basis of the long-term neuroprotection against cognitive impairment and neurodegeneration. In the neuropathological analysis, both WT and 5XFAD offspring of TPPU-treated dams showed lower levels of AD biomarkers of tau hyperphosphorylation and microglia activation (Trem2) than the offspring of vehicle-treated dams. Regarding sex differences, males and females were similarly protected by maternal TPPU, but females showed higher levels of AD risk markers of gliosis and neurodegeneration. Taken together, our results reveal that maternal treatment with TPPU impacts in preventing or delaying memory loss and AD pathology by inducing long-term modifications in the epigenetic machinery and its marks

    Exploring the reactivity of bicyclic α-iminophosphonates to access new imidazoline I2 receptor ligands

    No full text
    Recent studies pointed out the modulation of imidazoline I2 receptors (I2-IR) by selective ligands as a putative strategy to face neurodegenerative diseases. Foregoing the classical 2-imidazoline/imidazole-containing I2-IR ligands, we report a family of bicyclic α-iminophosphonates endowed with high affinity and selectivity upon I2-IR and we advanced a representative compound B06 in preclinical phases. In this paper, we describe the synthetic possibilities of bicyclic α-iminophosphonates by exploring its ambivalent reactivity, leading to unprecedented molecules that showed promising activities as I2-IR ligands in human brain tissues and good BBB permeation capabilities. After in silico ADME prediction studies, we assessed the neuroprotective properties of selected compounds and beneficial effect in an in vitro model of Alzheimeƕs and Parkinson’s disease. Along with their neuroprotective effect, compounds showed a potent anti-inflammatory response when evaluated in a neuroinflammation cellular model. Moreover, this is the first time that the neuroprotective effects of imidazoline I2-IR ligands in a transgenic Alzheimer’s disease Caenorhabditis elegans strain are investigated. Using a thrashing assay, we found a significant cognition improvement in this in vivo model after treatment with the new bicyclic α-phosphoprolines. Therefore, our results confirmed the need of exploring structurally new I2-IR ligands and their potential for therapeutic strategies in neurodegeneration.Depto. de BiologĂ­a CelularFac. de MedicinaTRUEpu
    corecore