12 research outputs found

    Administração à distância de drogas injetáveis em animais de médio e grande porte mediante o uso de besta

    Get PDF
    A administração de drogas intramusculares à distância em animais de zoológico, de criações extensivas e da fauna silvestre, envolve o uso de armas de ar comprimido ou de fogo, ambas de alto custo, ou então, dardos improvisados lançados por zarabatanas. Estes últimos apresentam resultados que ficam aquém do satisfatório em termos de distância e do volume de fármaco transportado. Tendo em vista a realidade econômica das instituições brasileiras de pesquisa veterinária e zoológica, foi desenvolvida uma flecha injetora com materiais de baixo custo, porém duradouros, para ser usada em bestas comerciais ou de fabricação artesanal, com grande eficácia em distâncias curtas e médias (até quinze metros). Esta foi utilizada com sucesso na imobilização química à distância de taiassuídeos (caititus e queixadas) e suídeos-ferais (porco-monteiro) na Fundação RioZoo e no Pantanal Matogrossense. O dispositivo mostrou ser prático, permitindo ser recarregado de modo simples e garantindo um satisfatório grau de penetração no tegumento do animal independentemente de sua resistência, porém sem maiores riscos de perfuração de partes vitais ou fratura de ossos

    Body and skull morphometric variations between two shovel-headed species of Amphisbaenia (Reptilia: Squamata) with morphofunctional inferences on burrowing

    No full text
    Background Morphological descriptions comparing Leposternon microcephalum and L. scutigerum have been made previously. However, these taxa lack a formal quantitative morphological characterization, and comparative studies suggest that morphology and burrowing performance are be related. The excavatory movements of L. microcephalum have been described in detail. However, there is a lack of studies comparing locomotor patterns and/or performance among different amphisbaenids sharing the same skull shape. This paper presents the first study of comparative morphometric variations between two closely related amphisbaenid species, L. microcephalum and L. scutigerum, with functional inferences on fossorial locomotion efficiency. Methods Inter-specific morphometric variations were verified through statistical analyses of body and cranial measures of L. microcephalum and L. scutigerum specimens. Their burrowing activity was assessed through X-ray videofluoroscopy and then compared. The influence of morphological variation on the speed of digging was tested among Leposternon individuals. Results Leposternon microcephalum and L. scutigerum are morphometrically distinct species. The first is shorter and robust with a wider head while the other is more elongated and slim with a narrower head. They share the same excavatory movements. The animals analyzed reached relatively high speeds, but individuals with narrower skulls dug faster. A negative correlation between the speed and the width of skull was determined, but not with total length or diameter of the body. Discussion The morphometric differences between L. microcephalum and L. scutigerum are in accord with morphological variations previously described. Since these species performed the same excavation pattern, we may infer that closely related amphisbaenids with the same skull type would exhibit the same excavatory pattern. The negative correlation between head width and excavation speed is also observed in others fossorial squamates. The robustness of the skull is also related to compression force in L. microcephalum. Individuals with wider heads are stronger. Thus, we suggest trade-offs between excavation speed and compression force during burrowing in this species

    Gender differences in microcirculation: Observation using the hamster cheek pouch

    Get PDF
    OBJECTIVES: Estrogen has been shown to play an important protective role in non-reproductive systems, such as the cardiovascular system. Our aim was to observe gender differences in vivo with regard to the increase in macromolecular permeability and leukocyte-endothelium interaction induced by ischemia/reperfusion as well as in microvascular reactivity to vasoactive substances using the hamster cheek pouch preparation. METHODS: Thirty-six male and 36 female hamsters, 21 weeks old, were selected for this study, and their cheek pouches were prepared for intravital microscopy. An increase in the macromolecular permeability of post-capillary venules was quantified as a leakage of intravenously injected fluorescein-labeled dextran, and the leukocyte-endothelium interaction was measured as the number of fluorescent rolling leukocytes or leukocytes adherent to the venular wall, labeled with rhodamin G, during reperfusion after 30 min of local ischemia. For microvascular reactivity, the mean internal diameter of arterioles was evaluated after the topical application of different concentrations of two vasoconstrictors, phenylephrine (α1-agonist) and endothelin-1, and two vasodilators, acetylcholine (endothelial-dependent) and sodium nitroprusside (endothelial-independent). RESULTS: The increase in macromolecular permeability induced by ischemia/reperfusion was significantly lower in females compared with males [19 (17-22) leaks/cm2 vs. 124 (123-128) leaks/cm2, respectively, p<0.001), but the number of rolling or adherent leukocytes was not different between the groups. Phenylephrine-induced arteriolar constriction was significantly lower in females compared with males [77 (73-102)% vs. 64 (55-69)%, p<0.04], but there were no detectable differences in endothelin-1-dependent vasoreactivity. Additionally, arteriolar vasodilatation elicited by acetylcholine or sodium nitroprusside did not differ between the groups. CONCLUSION: The female gender could have a direct protective role in microvascular reactivity and the increase in macromolecular permeability induced by ischemia/reperfusion

    Structural and functional changes in the microcirculation of lepromatous leprosy patients - Observation using orthogonal polarization spectral imaging and laser Doppler flowmetry iontophoresis

    No full text
    <div><p>Leprosy is a chronic granulomatous infection of skin and peripheral nerves caused by <i>Mycobacterium leprae</i> and is considered the main infectious cause of disability worldwide. Despite the several studies regarding leprosy, little is known about its effects on microvascular structure and function <i>in vivo</i>. Thus, we have aimed to compare skin capillary structure and functional density, cutaneous vasomotion (spontaneous oscillations of arteriolar diameter), which ensures optimal blood flow distribution to skin capillaries) and cutaneous microvascular blood flow and reactivity between ten men with lepromatous leprosy (without any other comorbidity) and ten age- and gender-matched healthy controls. Orthogonal polarization spectral imaging was used to evaluate skin capillary morphology and functional density and laser Doppler flowmetry to evaluate blood flow, vasomotion and spectral analysis of flowmotion (oscillations of blood flow generated by vasomotion) and microvascular reactivity, in response to iontophoresis of acetylcholine and sodium nitroprusside. The contribution of different frequency components of flowmotion (endothelial, neurogenic, myogenic, respiratory and cardiac) was not statistically different between groups. However, endothelial-dependent and -independent vasodilatations elicited by acetylcholine and sodium nitroprusside iontophoresis, respectively, were significantly reduced in lepromatous leprosy patients compared to controls, characterizing the existence of microvascular dysfunction. These patients also presented a significant increase in the number of capillaries with morphological abnormalities and in the diameters of the dermal papilla and capillary bulk when compared to controls. Our results suggest that lepromatous leprosy causes severe microvascular dysfunction and significant alterations in capillary structure. These structural and functional changes are probably induced by exposure of the microvascular bed to chronic inflammation evoked by the <i>Mycobacterium leprae</i>.</p></div

    Mast Cell Coupling to the Kallikrein–Kinin System Fuels Intracardiac Parasitism and Worsens Heart Pathology in Experimental Chagas Disease

    Get PDF
    During the course of Chagas disease, infectious forms of Trypanosoma cruzi are occasionally liberated from parasitized heart cells. Studies performed with tissue culture trypomastigotes (TCTs, Dm28c strain) demonstrated that these parasites evoke neutrophil/CXCR2-dependent microvascular leakage by activating innate sentinel cells via toll-like receptor 2 (TLR2). Upon plasma extravasation, proteolytically derived kinins and C5a stimulate immunoprotective Th1 responses via cross-talk between bradykinin B2 receptors (B2Rs) and C5aR. Awareness that TCTs invade cardiovascular cells in vitro via interdependent activation of B2R and endothelin receptors [endothelin A receptor (ETAR)/endothelin B receptor (ETBR)] led us to hypothesize that T. cruzi might reciprocally benefit from the formation of infection-associated edema via activation of kallikrein–kinin system (KKS). Using intravital microscopy, here we first examined the functional interplay between mast cells (MCs) and the KKS by topically exposing the hamster cheek pouch (HCP) tissues to dextran sulfate (DXS), a potent “contact” activator of the KKS. Surprisingly, although DXS was inert for at least 30 min, a subtle MC-driven leakage resulted in factor XII (FXII)-dependent activation of the KKS, which then amplified inflammation via generation of bradykinin (BK). Guided by this mechanistic insight, we next exposed TCTs to “leaky” HCP—forged by low dose histamine application—and found that the proinflammatory phenotype of TCTs was boosted by BK generated via the MC/KKS pathway. Measurements of footpad edema in MC-deficient mice linked TCT-evoked inflammation to MC degranulation (upstream) and FXII-mediated generation of BK (downstream). We then inoculated TCTs intracardiacally in mice and found a striking decrease of parasite DNA (quantitative polymerase chain reaction; 3 d.p.i.) in the heart of MC-deficient mutant mice. Moreover, the intracardiac parasite load was significantly reduced in WT mice pretreated with (i) cromoglycate (MC stabilizer) (ii) infestin-4, a specific inhibitor of FXIIa (iii) HOE-140 (specific antagonist of B2R), and (iv) bosentan, a non-selective antagonist of ETAR/ETBR. Notably, histopathology of heart tissues from mice pretreated with these G protein-coupled receptors blockers revealed that myocarditis and heart fibrosis (30 d.p.i.) was markedly and redundantly attenuated. Collectively, our study suggests that inflammatory edema propagated via activation of the MC/KKS pathway fuels intracardiac parasitism by generating infection-stimulatory peptides (BK and endothelins) in the edematous heart tissues
    corecore