13 research outputs found

    Natural Dietary Pigments:Potential Mediators against Hepatic Damage Induced by Over-The-Counter Non-Steroidal Anti-Inflammatory and Analgesic Drugs

    Get PDF
    Over-the-counter (OTC) analgesics are among the most widely prescribed and purchased drugs around the world. Most analgesics, including non-steroidal anti-inflammatory drugs (NSAIDs) and acetaminophen, are metabolized in the liver. The hepatocytes are responsible for drug metabolism and detoxification. Cytochrome P450 enzymes are phase I enzymes expressed mainly in hepatocytes and they account for ≈75% of the metabolism of clinically used drugs and other xenobiotics. These metabolic reactions eliminate potentially toxic compounds but, paradoxically, also result in the generation of toxic or carcinogenic metabolites. Cumulative or overdoses of OTC analgesic drugs can induce acute liver failure (ALF) either directly or indirectly after their biotransformation. ALF is the result of massive death of hepatocytes induced by oxidative stress. There is an increased interest in the use of natural dietary products as nutritional supplements and/or medications to prevent or cure many diseases. The therapeutic activity of natural products may be associated with their antioxidant capacity, although additional mechanisms may also play a role (e.g., anti-inflammatory actions). Dietary antioxidants such as flavonoids, betalains and carotenoids play a preventive role against OTC analgesics-induced ALF. In this review, we will summarize the pathobiology of OTC analgesic-induced ALF and the use of natural pigments in its prevention and therapy

    The Ginkgo biloba

    Get PDF
    The Ginkgo biloba extract (GbE) is a commercial product used as a nutraceutic herbal remedy in Europe and US. It contains 27% of the polyphenols isorhamnetin, kaempferol, and quercetin, as antioxidants. We used male adult Wistar rats (200–300 g), divided into four groups: control group (treated with 5.0 mg/kg of sodium chloride, intravenous), titanium dioxide nanoparticles (TiO2-NPs) group (5.0 mg/kg, intravenous), GbE group (10 mg/kg, intraperitoneal), and GbE + TiO2-NPs group (treated 24 h before with 10 mg/kg of GbE, intraperitoneal), followed, 24 h later, by 5.0 mg/kg of TiO2-NPs intravenously. The statistical analysis was performed using Student’s t-test for grouped data with ANOVA posttest. The GbE protected renal cells against the effects of TiO2-NPs because it reversed the increased activity of γ-glutamyltranspeptidase and the enzymatic activity of dipeptidylaminopeptidase IV at all times tested (0–5, 5–24, 24–48, and 48–72 h). Also it reversed the glucosuria, hypernatriuria, and urine osmolarity at three times tested (5–24, 24–48, and 48–72). Thus, we conclude that GbE has a beneficial activity in the cytoplasmic membranes of brush border cells on the renal tubules, against the adverse effects that can be produced by some xenobiotics in this case the TiO2-NPs, in experimental rats

    Allium sativum aqueous extract prevents potassium dichromate-induced nephrotoxicity and lipid oxidation in rats

    No full text
    Context: The potassium dichromate (K2Cr2O7) induces nephrotoxicity by oxidative stress mechanisms. Aims: To study the potential protection of an aqueous extract of Allium sativum against the K2Cr2O7-induced nephrotoxicity and lipid oxidation in rats. Methods: Twenty four hours after treatment, biomarkers such as proteinuria, creatinine clearance, malondialdehyde production, specific enzyme activity of gamma glutamyl transpeptidase and alanine aminopeptidase, and renal clearance of para-aminohippuric acid and inulin were measured. Results: The K2Cr2O7 caused significant renal dysfunction, but A. sativum extract prevented this condition by improving all measured biomarkers. Conclusions: A single injection of K2Cr2O7 induced nephrotoxicity in rats, but the supply of an Allium sativum aqueous extract prevented the disorders caused by this metal

    Disorders induced by chromium to health and the use of antioxidants in the prevention or treatment

    No full text
    The cell maintains a constant balance of redox processes, thus preserving regulating the balance between pro-oxidant production and antioxidant defense systems. Disruption of this balance leads to oxidative stress state which is characterized by increased levels of free radicals, leading to damage or cell death. Oxidative stress is associated with the pathogenesis of various diseases. In this regard, the evidence shows the oxidizing capacity of heavy metals, including chromium. However, this event can be regulated by nucleophilic nature substances which prevent or reverse the respective disorders. In this context, when the capacity of cellular response against the action of reactive oxygen species is suppressed, the intake of products that help keep the respective functional integrity is indispensable. Already reported some beneficial effects of antioxidants on the functional alterations promoted by heavy metals. The intent of this review is to summarize the scientific ability of chromium to induce pathology in different organ systems and the ability of some antioxidants to prevent or reverse this quality

    F-Actin Distribution Changes Provoked by Acetaminophen in the Proximal Tubule in Kidney of Adult Male Rat

    No full text
    Abstract Acetaminophen is a drug used to treat many conditions as headache, muscle aches, arthritis, backache, toothache, and fever between others, but collateral effects of this drug are not well known yet. Here is tested its effect on proximal tubule epithelium. Acetaminophen (APAP) at doses of 200, 500, 1000 and 1500 mg/Kg i.p. caused cell damage and changes in F-actin distribution in the proximal tubule of male Wistar rats. After 48 hours of treatment, the proximal tubule epithelium showed tumefaction and necrosis. Dose of 200 mg/kg decreased the F-actin and was observed a structure in patches in the basal cytoplasm of epithelial cells of the proximal tubule. This effect was increased depending on the administered dose. Dose of 1000 mg/kg produced the highest histological damage and changes in the actin cytoskeleton. Results of this study suggested that nephrotoxic damage produced by high doses of APAP included breakdown of cytoskeleton in proximal tubule epithelium
    corecore