14 research outputs found

    Materiales microporosos basados en tierras raras con potencial aplicación en dispositivos electrónicos

    Get PDF
    Los polímeros de coordinación metal-orgánicos (MOFs) son un tipo de material poroso sumamente versátil en cuanto al rango de aplicaciones posibles. Los MOFs se forman a partir del ensamblaje entre centros metálicos y ligandos orgánicos en una red tridimensional. Las propiedades del MOF en cuestión dependen del centro metálico, el ligando, el tipo de conexión, la estructura tridimensional, la morfología, entre otros factores. La inmensidad de posibles arreglos ha permitido la utilización de MOFs en diversos campos de aplicación, desde la adsorción y separación de gases, hasta la fotocatálisis. Siendo los MOFs materiales de elevada cristalinidad, la resolución de sus estructuras por métodos de difracción es accesible, lo que permite aspirar a comprender las bases de su funcionamiento en término de arreglos atómicos. Este trabajo tratará de explorar dos aplicaciones en particular y sus relaciones con la estructura atómica para una familia de MOFs: la conducción protónica para potenciales electrolitos de celdas de combustible de baja temperatura y la generación de un material emisor de luz blanca a partir de tres centros lantánidos emisores. La tesis se centra en el estudio de una familia de MOFs heteropolinucleares de fórmula general [Ln2M3(oda)6]∙nH2O, formados a partir de un metal lantánido trivalente (Ln3+), un metal de transición divalente (M2+) y el ligando oxidiacetato (oda2-). El ensamblaje entre los tres lleva en general a la formación de una estructura hexagonal neutra o de una red cúbica aniónica con contraiones intercalados en los poros del material. Se estudiaron principalmente las series que estaban prácticamente inexploradas de M = Ni y Co, en todo el rango de iones Ln. Se focalizó en los aspectos estructurales de los compuestos, sobre todo en las características geométricas que llevan a la obtención de un polimorfo preferencial en función de los metales M y Ln. Se propuso un modelo en el cual se define un factor de tolerancia en función de los radios iónicos de los metales, con el objetivo de explicar y predecir el tipo de estructura esperada. Se puso a prueba el factor definido frente a un sistema binario en la posición M: [Yb2NixCo3-x(oda)6]∙nH2O. Se caracterizaron por medio de difracción de polvo diferentes muestras con distinto grado de sustitución

    Genetic landscape of 6089 inherited retinal dystrophies affected cases in Spain and their therapeutic and extended epidemiological implications

    Full text link
    Inherited retinal diseases (IRDs), defined by dysfunction or progressive loss of photoreceptors, are disorders characterized by elevated heterogeneity, both at the clinical and genetic levels. Our main goal was to address the genetic landscape of IRD in the largest cohort of Spanish patients reported to date. A retrospective hospital-based cross-sectional study was carried out on 6089 IRD affected individuals (from 4403 unrelated families), referred for genetic testing from all the Spanish autonomous communities. Clinical, demographic and familiar data were collected from each patient, including family pedigree, age of appearance of visual symptoms, presence of any systemic findings and geographical origin. Genetic studies were performed to the 3951 families with available DNA using different molecular techniques. Overall, 53.2% (2100/3951) of the studied families were genetically characterized, and 1549 different likely causative variants in 142 genes were identified. The most common phenotype encountered is retinitis pigmentosa (RP) (55.6% of families, 2447/4403). The most recurrently mutated genes were PRPH2, ABCA4 and RS1 in autosomal dominant (AD), autosomal recessive (AR) and X-linked (XL) NON-RP cases, respectively; RHO, USH2A and RPGR in AD, AR and XL for non-syndromic RP; and USH2A and MYO7A in syndromic IRD. Pathogenic variants c.3386G > T (p.Arg1129Leu) in ABCA4 and c.2276G > T (p.Cys759Phe) in USH2A were the most frequent variants identified. Our study provides the general landscape for IRD in Spain, reporting the largest cohort ever presented. Our results have important implications for genetic diagnosis, counselling and new therapeutic strategies to both the Spanish population and other related populations.This work was supported by the Instituto de Salud Carlos III (ISCIII) of the Spanish Ministry of Health (FIS; PI16/00425 and PI19/00321), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER, 06/07/0036), IIS-FJD BioBank (PT13/0010/0012), Comunidad de Madrid (CAM, RAREGenomics Project, B2017/BMD-3721), European Regional Development Fund (FEDER), the Organización Nacional de Ciegos Españoles (ONCE), Fundación Ramón Areces, Fundación Conchita Rábago and the University Chair UAM-IIS-FJD of Genomic Medicine. Irene Perea-Romero is supported by a PhD fellowship from the predoctoral Program from ISCIII (FI17/00192). Ionut F. Iancu is supported by a grant from the Comunidad de Madrid (CAM, PEJ-2017-AI/BMD7256). Marta del Pozo-Valero is supported by a PhD grant from the Fundación Conchita Rábago. Berta Almoguera is supported by a Juan Rodes program from ISCIII (JR17/00020). Pablo Minguez is supported by a Miguel Servet program from ISCIII (CP16/00116). Marta Corton is supported by a Miguel Servet program from ISCIII (CPII17/00006). The funders played no role in study design, data collection, data analysis, manuscript preparation and/or publication decisions

    Synthèses isomorphes vers des nanomatériaux à base de bore

    No full text
    Les composés contenant du bore présentent plusieurs propriétés physiques exploitables pour les besoins industriels actuels, à savoir l'activité catalytique, le magnétisme, la supercapacité, la capacité de stockage élevée du Li+ et d'excellentes propriétés mécaniques. La plupart de ces propriétés peuvent être adaptées et idéalement optimisées en façonnant le matériau en morphologies nanostructurées. Cependant, la nature fortement covalente des liaisons chimique impliquant le bore entrave la synthèse des nanostructures, car un apport d'énergie élevé est nécessaire pour former ces liaisons. Cela se traduit par des températures de synthèse élevées qui, en fin de compte, déclenchent également la croissance des grains. La synthèse de sels fondus a suscité un intérêt considérable en tant qu'outil de synthèse pour produire des nanostructures. Les sels fondus permettent d'effectuer des réactions chimiques dans un milieu liquide à des températures suffisamment élevées pour déclencher la cristallisation des borures, mais suffisamment douces pour limiter leur croissance. Malgré son succès, le contrôle de la morphologie du produit reste un défi important. Dans certains cas, ce problème peut être surmonté par des méthodes isomorphes, c'est-à-dire en utilisant des nanoparticules comme précurseurs, qui subissent une restructuration interne, de sorte qu'elles puissent également servir de nano-gabarits. Dans ce travail de thèse, l'utilisation de nano-gabarits couplée à la synthèse de nanomatériaux par sels fondus a été explorée pour deux systèmes difficiles à base de bore. Tout d'abord, des nanoparticles de carbure de bore ont été synthétisées à partir de gabarits de carbaborure de sodium, eux-mêmes synthétisés dans des sels fondus. L'intérêt de produire des nanostructures de carbure de bore a été largement reconnu dans la littérature comme un moyen d'améliorer sa dureté et son utilisation durable en tant que matériau de structure. La synthèse du gabarit a été réalisée grâce à la réaction entre une source de carbone polymère (polyéthylène) et NaBH4 dans du NaI fondu, ce qui a fourni des nanoparticules de ~ 5 nm. Ces nanoparticules ont alors pu être transformées avec succès en carbure de bore par décomposition thermique tout en conservant la morphologie nanométrique . En outre, la transformation du carbure de bore en monolithes denses a également été étudiée au moyen du frittage par plasma en courant pulsé. Une fois la densification et la consolidation réalisées, les propriétés mécaniques des nanostructures de carbure de bore ont été étudiées. Nous avons ainsi mis en évidence une dureté et une résistance à l'amorphisation significativement supérieures à celles de leur homologue massif. En parallèle, un système de borure métallique lamellaire a également été étudié avec des procédures analogues. Le système en question est Fe2AlB2, constitué de couches de Fe2B2 intercalées par des couches d'Al. Cette phase suscite un énorme intérêt en tant que précurseur possible vers le Fe2B2 bidimensionnel. La synthèse du Fe2AlB2 présente cependant plusieurs difficultés. Nous avons ici exploité l'approche du gabarit dans les sels fondus à partir d'un précurseur de FeB. Nous avons démontré que l'insertion d'Al en milieu LiCl/KCl fondu fourni bien Fe2AlB2. La délamination de la phase Fe2AlB2 vers 2D-Fe2B2 a été étudiée par oxydation sélective des atomes d'Al. Bien que la délamination n'ait pas été atteinte, nous avons mis en évidence un comportement thermique anormal dans Fe2AlB2. Lorsqu'il est traité thermiquement, Fe2AlB2 expulse des atomes de Fe et de B de la structure, générant ainsi des lacunes. Ce mécanisme a été démontré par diffraction des rayons X in situ et par des analyses post mortem.Boron-containing compounds exhibit several physical properties exploitable for current industrial needs, i.e. catalytic activity, magnetism, supercapacitance, high Li+ storage capacity and excellent mechanical properties. Most of these properties can be tailored and ideally optimized by shaping the material into nanostructured morphologies. However, the strong covalent nature of boron bonding hurdles the synthesis of nanostructures, as high input energy is needed to form such bonds. This translates in elevated synthesis temperatures, which ultimately also trigger grain growth. Molten-salts synthesis has gained considerable attention as a synthetic tool to yield nanostructures. Molten-salts permit to perform chemical reactions under a liquid media in a range of temperatures sufficiently large to trigger borides crystallization, but soft enough to limit their growth. Despite its success, the control over the product’s morphology remains a significant challenge. In some cases, this can be overcome by isomorphic methods, i.e., using nanoparticles as precursors, which undergo internal restructuration, so that they could also act as nanotemplates. In this thesis work, the use of nanotemplates coupled to molten salts synthesis of nanomaterials has been explored for two challenging boron-based systems. Firstly, boron carbide nanostructures were synthesized from sodium carbaboride templates, themselves synthesized in molten salts. The interest behind producing boron carbide nanostructures has been largely recognized in the literature, as a way to ameliorate its hardness and durable use as a structural material. The template synthesis is achieved thanks to the reaction between a polymeric carbon source (polyethylene) and NaBH4 in molten NaI, which yield ~ 5 nm nanoparticles. These nanoparticles can be successfully transformed to boron carbide while maintaining the nanoscale morphology by thermal decomposition. Furthermore, the processing of boron carbide into dense monoliths was also studied by means of spark-plasma sintering. Once proper densification and consolidation were achieved, the mechanical properties of the boron carbide nanostructures were investigated. We then highlighted a significantly higher hardness and amorphization resistance than the bulk counterpart. In parallel, a layered metal boride system has also been investigated with analogous procedures. The system in question is Fe2AlB2, consisting of Fe2B2 layers intercalated by Al layers. This phase has raised enormous interest as a possible parent phase towards bidimensional Fe2B2. The synthesis of Fe2AlB2 presents several difficulties though. We have herein exploited the templating approach in molten salts from a bulk FeB template, which we demonstrate that upon Al insertion in molten LiCl/KCl yields Fe2AlB2. The Fe2AlB2 phase delamination towards 2D-Fe2B2 was investigated by selective oxidation of the Al atoms. Although delamination did not occur, we evidenced an abnormal thermal behaviour in Fe2AlB2. When thermally treated, Fe2AlB2 expulses Fe and B atoms out of the structure, generating vacancies. This mechanism was demonstrated by in situ X-ray diffraction and post mortem analyses

    Fantasía.

    No full text

    Fantasía.

    No full text

    Electron Precise Sodium Carbaboride Nanocrystals from Molten Salts: Single Sources to Boron Carbides

    No full text
    International audienceBoron-rich solids exhibit specific crystal structures and unique properties, which are only very scarcely addressed in nanoparticles. In this work, we address the original inorganic structural chemistry and reactivity of boron-rich nanoparticles, by reporting the first occurrence of sodium carbaboride nanocrystals based on the NaB 5 C crystal structure. To design these sub-10 nm nano-objects, we use liquid-phase synthesis in molten salts at 900°C. By combining a set of characterization tools including powder Xray powder diffraction, transmission electron microscopy, solid-state nuclear magnetic resonance coupled to DFT modeling, and X-ray photoelectron spectroscopy, we demonstrate that these nanocrystals deviate from the ideal stoichiometry reported for the bulk compound. We suggest that the carbon and sodium contents compensate each other to ensure that the octahedral cluster-based framework is stabilized by fulfilling an electron counting rule. These nanocrystals encompass substituted octahedral covalent structural building units not reported in the related bulk compound. They then shed new light on the ability of nanoparticles to host wide solid solution ranges in covalent solids and then to yield new solids. We finally show that these nanocrystals are efficient single sources of boron and carbon to form a nanostructured boron carbide, thus paving the way to new nanostructured materials

    A Zn(II) luminescent complex with a Schiff base ligand: solution, computational and solid state studies

    No full text
    <p>A new mononuclear complex of zinc(II), [Zn(HL)<sub>2</sub>]∙2DMF (H<sub>2</sub>L = (<i>E</i>)-<i>N′</i>-((<i>E</i>)-(hydroxyimino)butan-2-ylidene)salicyloylhydrazide, DMF = <i>N,N</i>-dimethylformamide), was prepared and characterized. Single-crystal X-ray crystallography revealed a six-coordinate zinc(II) surrounded by nitrogen of the oxime function and oxygen and distal nitrogens of the acylhydrazone group. This entity also exists in solution as demonstrated by <sup>1</sup>H-NMR and potentiometric titrations. The computational analysis showed that the molecular orbitals involved in the main electronic transitions of the complex species in solution are centered on the ligand with negligible contribution of the metal ion. The photophysical properties of the complex were evaluated in solution and in the solid state. Luminescence studies showed that the solid has a strong emission at 550 nm with a large Stokes shift with respect to absorption. The solid state fluorescence emission is ascribed to ligand-centered and/or ligand-to-ligand charge transfer transitions, following the DFT results in solution. A comparison with a previously reported mononuclear [Zn(HL)<sub>2</sub>] allowed the investigation of the influence of DMF molecules in the structural packing and the luminescence properties.</p

    Revealing the Elusive Structure and Reactivity of Iron Boride α‑FeB

    No full text
    Crystal structures can strongly deviate from bulk states when confined into nanodomains. These deviations may deeply affect properties and reactivity and then call for a close examination. In this work, we address the case where extended crystal defects spread through a whole solid and then yield an aperiodic structure and specific reactivity. We focus on iron boride, α-FeB, whose structure has not been elucidated yet, thus hindering the understanding of its properties. We synthesize the two known phases, α-FeB and β-FeB, in molten salts at 600 and 1100 °C, respectively. The experimental X-ray diffraction (XRD) data cannot be satisfactorily accounted for by a periodic crystal structure. We then model the compound as a stochastic assembly of layers of two structure types. Refinement of the powder XRD pattern by considering the explicit scattering interference of the different layers allows quantitative evaluation of the size of these domains and of the stacking faults between them. We, therefore, demonstrate that α-FeB is an intergrowth of nanometer-thick slabs of two structure types, β-FeB and CrB-type structures, in similar proportions. We finally discuss the implications of this novel structure on the reactivity of the material and its ability to perform insertion reactions by comparing the reactivities of α-FeB and β-FeB as reagents in the synthesis of a model layered material: Fe2AlB2. Using synchrotron-based in situ X-ray diffraction, we elucidate the mechanisms of the formation of Fe2AlB2. We highlight the higher reactivity of the intergrowth α-FeB in agreement with structural relationships

    Heterostructured Cobalt Silicide Nanocrystals: Synthesis in Molten Salts, Ferromagnetism, and Electrocatalysis

    No full text
    International audienceNanoscale heterostructures of covalent intermetallics should give birth to a wide range of interface-driven physical and chemical properties. Such a level of design however remains unattainable for most of these compounds, due to the difficulty to reach a crystalline order of covalent bonds at the moderate temperatures required for colloidal chemistry. Herein, we design heterostructured cobalt silicide nanoparticles to trigger magnetic and catalytic properties in silicon-based materials. Our strategy consists in controlling the diffusion of cobalt atoms into silicon nanoparticles, by reacting these particles in molten salts. By adjusting the temperature, we tune the conversion of the initial silicon particles toward homogeneous CoSi nanoparticles and core–shell nanoparticles made of a CoSi shell and a silicon-rich core. The increased interface-to-volume ratio of the CoSi component in the core–shell particles yields distinct properties compared to the bulk and homogeneous nanoparticles. First, the core–shell particles exhibit increased ferromagnetism, despite the bulk diamagnetic properties of cobalt monosilicide. Second, the core–shell nanoparticles act as efficient precatalysts for alkaline water oxidation, where the nanostructure is converted in situ into a layered cobalt silicon oxide/(oxy)hydroxide with high and stable oxygen evolution reaction (OER) electrocatalytic activity. This work demonstrates a route to design heterostructured nanocrystals of covalent intermetallic compounds and shows that these new structures exhibit very rich, yet poorly explored, interface-based physical properties and reactivity
    corecore