35 research outputs found

    A phase 2, double-blind, placebo-controlled, randomized study of fresolimumab in patients with steroid-resistant primary focal segmental glomerulosclerosis

    Get PDF
    Introduction: Steroid-resistant focal segmental glomerulosclerosis (SR-FSGS) is a common glomerulopathy associated with nephrotic range proteinuria. Treatment goals are reduction in proteinuria, which can delay end-stage renal disease. Methods: Patients with SR-FSGS were enrolled in a randomized, double-blind placebo-controlled trial of fresolimumab, a monoclonal anti transforming growth factor b antibody, at 1 mg/kg or 4 mg/kg for 112 days, followed double-blind for 252 days (NCT01665391). The primary efficacy endpoint was the percentage of patients achieving partial (50% reduction) or complete (< 300 mg/g Cr) remission of proteinuria. Results: Of 36 enrolled patients, 10, 14, and 12 patients received placebo, fresolimumab 1 mg/kg, and fresolimumab 4 mg/kg, respectively. The baseline estimated glomerular filtration rate (eGFR) and urinary protein/creatinine ratio were 63 ml/min/1.73 m2 and 6190 mg/g, respectively. The study was closed before reaching its target of 88 randomized patients. None of the prespecified efficacy endpoints for proteinuria reduction were achieved; however, at day 112, the mean percent change in urinary protein/creatinine ratio (a secondary efficacy endpoint) was –18.5% (P ¼ 0.008), þ10.5% (P ¼ 0.52), and þ9.0% (P ¼ 0.91) in patients treated with fresolimumab 1 mg/kg, fresolimumab 4 mg/kg, and placebo, respectively. There was a nonsignificant trend toward greater estimated glomerular filtration rate decline in the placebo group compared to either of the fresolimumab-treated arms up to day 252. Discussion: The study was underpowered and did not meet the primary or secondary endpoints. However, fresolimumab was well tolerated and is appropriate for continued evaluation in larger studies with adequate power

    Circulating autoreactive proteinase 3(+) B cells and tolerance checkpoints in ANCA-associated vasculitis

    Get PDF
    BACKGROUND: Little is known about the autoreactive B cells in antineutrophil cytoplasmic antibody–associated (ANCA-associated) vasculitis (AAV). We aimed to investigate tolerance checkpoints of circulating antigen-specific proteinase 3–reactive (PR3(+)) B cells. METHODS: Multicolor flow cytometry in combination with bioinformatics and functional in vitro studies were performed on baseline samples of PBMCs from 154 well-characterized participants of the RAVE trial (NCT00104299) with severely active PR3-AAV and myeloperoxidase-AAV (MPO-AAV) and 27 healthy controls (HCs). Clinical data and outcomes from the trial were correlated with PR3(+) B cells (total and subsets). RESULTS: The frequency of PR3(+) B cells among circulating B cells was higher in participants with PR3-AAV (4.77% median [IQR, 3.98%–6.01%]) than in participants with MPO-AAV (3.16% median [IQR, 2.51%–5.22%]) and participants with AAV compared with HCs (1.67% median [IQR, 1.27%–2.16%], P < 0.001 for all comparisons), implying a defective central tolerance checkpoint in patients with AAV. Only PBMCs from participants with PR3-AAV contained PR3(+) B cells capable of secreting PR3-ANCA IgG in vitro, proving they were functionally distinct from those of participants with MPO-AAV and HCs. Unsupervised clustering identified subtle subsets of atypical autoreactive PR3(+) memory B cells accumulating through the maturation process in patients with PR3-AAV. PR3(+) B cells were enriched in the memory B cell compartment of participants with PR3-AAV and were associated with higher serum CXCL13 levels, suggesting an increased germinal center activity. PR3(+) B cells correlated with systemic inflammation (C-reactive protein and erythrocyte sedimentation rate, P < 0.05) and complete remission (P < 0.001). CONCLUSION: This study suggests the presence of defective central antigen-independent and peripheral antigen-dependent checkpoints in patients with PR3-AAV, elucidating the selection process of autoreactive B cells. TRIAL REGISTRATION: ClinicalTrials.gov NCT00104299. FUNDING: The Vasculitis Foundation, the National Institute of Allergy and Infectious Diseases of the NIH, and the Mayo Foundation for Education and Research

    Acute Treatment Effects on GFR in Randomized Clinical Trials of Kidney Disease Progression

    Get PDF
    Background: Acute changes in GFR can occur after initiation of interventions targeting progression of CKD. These acute changes complicate the interpretation of long-term treatment effects. Methods: To assess the magnitude and consistency of acute effects in randomized clinical trials and explore factors that might affect them, we performed a meta-analysis of 53 randomized clinical trials for CKD progression, enrolling 56,413 participants with at least one estimated GFR measurement by 6 months after randomization. We defined acute treatment effects as the mean difference in GFR slope from baseline to 3 months between randomized groups. We performed univariable and multivariable metaregression to assess the effect of intervention type, disease state, baseline GFR, and albuminuria on the magnitude of acute effects. Results: The mean acute effect across all studies was 20.21 ml/min per 1.73 m2 (95% confidence interval, 20.63 to 0.22) over 3 months, with substantial heterogeneity across interventions (95% coverage interval across studies, 22.50 to 12.08 ml/min per 1.73 m2). We observed negative average acute effects in renin angiotensin system blockade, BP lowering, and sodium-glucose cotransporter 2 inhibitor trials, and positive acute effects in trials of immunosuppressive agents. Larger negative acute effects were observed in trials with a higher mean baseline GFR. Conclusion: The magnitude and consistency of acute GFR effects vary across different interventions, and are larger at higher baseline GFR. Understanding the nature and magnitude of acute effects can help inform the optimal design of randomized clinical trials evaluating disease progression in CKD

    Executive summary of the KDIGO 2021 Guideline for the Management of Glomerular Diseases.

    Get PDF
    The Kidney Disease: Improving Global Outcomes (KDIGO) Clinical Practice Guideline for the Management of Glomerular Diseases is an update to the KDIGO 2012 guideline. The aim is to assist clinicians caring for individuals with glomerulonephritis (GN), both adults and children. The scope includes various glomerular diseases, including IgA nephropathy and IgA vasculitis, membranous nephropathy, nephrotic syndrome, minimal change disease (MCD), focal segmental glomerulosclerosis (FSGS), infection-related GN, antineutrophil cytoplasmic antibody (ANCA) vasculitis, lupus nephritis, and anti-glomerular basement membrane antibody GN. In addition, this guideline will be the first to address the subtype of complement-mediated diseases. Each chapter follows the same format providing guidance related to diagnosis, prognosis, treatment, and special situations. The goal of the guideline is to generate a useful resource for clinicians and patients by providing actionable recommendations based on evidence syntheses, with useful infographics incorporating views from experts in the field. Another aim is to propose research recommendations for areas where there are gaps in knowledge. The guideline targets a broad global audience of clinicians treating GN while being mindful of implications for policy and cost. Development of this guideline update followed an explicit process whereby treatment approaches and guideline recommendations are based on systematic reviews of relevant studies, and appraisal of the quality of the evidence and the strength of recommendations followed the "Grading of Recommendations Assessment, Development and Evaluation" (GRADE) approach. Limitations of the evidence are discussed, with areas of future research also presented

    The genetic architecture of membranous nephropathy and its potential to improve non-invasive diagnosis

    Get PDF
    Membranous Nephropathy (MN) is a rare autoimmune cause of kidney failure. Here we report a genome-wide association study (GWAS) for primary MN in 3,782 cases and 9,038 controls of East Asian and European ancestries. We discover two previously unreported loci, NFKB1 (rs230540, OR = 1.25, P = 3.4 × 10−12) and IRF4 (rs9405192, OR = 1.29, P = 1.4 × 10−14), fine-map the PLA2R1 locus (rs17831251, OR = 2.25, P = 4.7 × 10−103) and report ancestry-specific effects of three classical HLA alleles: DRB1*1501 in East Asians (OR = 3.81, P = 2.0 × 10−49), DQA1*0501 in Europeans (OR = 2.88, P = 5.7 × 10−93), and DRB1*0301 in both ethnicities (OR = 3.50, P = 9.2 × 10−23 and OR = 3.39, P = 5.2 × 10−82, respectively). GWAS loci explain 32% of disease risk in East Asians and 25% in Europeans, and correctly re-classify 20–37% of the cases in validation cohorts that are antibody-negative by the serum anti-PLA2R ELISA diagnostic test. Our findings highlight an unusual genetic architecture of MN, with four loci and their interactions accounting for nearly one-third of the disease risk

    The genetic architecture of membranous nephropathy and its potential to improve non-invasive diagnosis

    Get PDF
    Membranous Nephropathy (MN) is a rare autoimmune cause of kidney failure. Here we report a genome-wide association study (GWAS) for primary MN in 3,782 cases and 9,038 controls of East Asian and European ancestries. We discover two previously unreported loci, NFKB1 (rs230540, OR = 1.25, P = 3.4 × 10-12) and IRF4 (rs9405192, OR = 1.29, P = 1.4 × 10-14), fine-map the PLA2R1 locus (rs17831251, OR = 2.25, P = 4.7 × 10-103) and report ancestry-specific effects of three classical HLA alleles: DRB1*1501 in East Asians (OR = 3.81, P = 2.0 × 10-49), DQA1*0501 in Europeans (OR = 2.88, P = 5.7 × 10-93), and DRB1*0301 in both ethnicities (OR = 3.50, P = 9.2 × 10-23 and OR = 3.39, P = 5.2 × 10-82, respectively). GWAS loci explain 32% of disease risk in East Asians and 25% in Europeans, and correctly re-classify 20-37% of the cases in validation cohorts that are antibody-negative by the serum anti-PLA2R ELISA diagnostic test. Our findings highlight an unusual genetic architecture of MN, with four loci and their interactions accounting for nearly one-third of the disease risk

    The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility

    Get PDF
    Pathological classifications in current use for the assessment of glomerular disease have been typically opinion-based and built on the expert assumptions of renal pathologists about lesions historically thought to be relevant to prognosis. Here we develop a unique approach for the pathological classification of a glomerular disease, IgA nephropathy, in which renal pathologists first undertook extensive iterative work to define pathologic variables with acceptable inter-observer reproducibility. Where groups of such features closely correlated, variables were further selected on the basis of least susceptibility to sampling error and ease of scoring in routine practice. This process identified six pathologic variables that could then be used to interrogate prognostic significance independent of the clinical data in IgA nephropathy (described in the accompanying article). These variables were (1) mesangial cellularity score; percentage of glomeruli showing (2) segmental sclerosis, (3) endocapillary hypercellularity, or (4) cellular/ fibrocellular crescents; (5) percentage of interstitial fibrosis/ tubular atrophy; and finally (6) arteriosclerosis score. Results for interobserver reproducibility of individual pathological features are likely applicable to other glomerulonephritides, but it is not known if the correlations between variables depend on the specific type of glomerular pathobiology. Variables identified in this study withstood rigorous pathology review and statistical testing and we recommend that they become a necessary part of pathology reports for IgA nephropathy. Our methodology, translating a strong evidence-based dataset into a working format, is a model for developing classifications of other types of renal disease

    Membrane transport abnormalities in patients with renal failure

    No full text
    The possibility that changes in membrane transport systems may contribute to the pathophysiology of the uraeraic syndrome has not been extensively studied. This thesis presents a study of eight erythrocyte membrane transport systems, namely the Na/K pump, the amino acid systems y+, ASC, gly, L and T, the nucleoside and choline transporters. The results indicate that, compared to normal controls, K+ flux through the Na/K pump was reduced in chronic renal failure patients (CRF), on haemodialysis (HD), and on continuous ambulatory peritoneal dialysis (CAPD), but was normal in functional transplant (FT) patients' erythrocytes. The number of Na/K pumps per erythrocyte was decreased in CRF and CAPD but showed no differences between HD, FT and Normal controls. The mean turnover rate per pump site was reduced in patients on HD, whereas other groups were not significantly different from controls. Cross-incubation experiments suggest that the lowered pump flux seen in the HD group was due to plasma factors since reversibility of the defect was achieved when those cells were incubated in normal plasma. The defect was completely reversed with a successful transplant. Erythrocytes from haemodialysis patients exhibited an increased uptake of L-lysine through the y+ system. The uptake of L-serine was decreased and the affinity of the ASC system for L-serine was increased in these patients compared with controls. The glycine transporter showed a significant increase in affinity for glycine. The flux of L-leucine and L-tryptophan showed no differences from control cells. Erythrocyte membrane transport of uridine was similar in normal control cells and in those obtained from uraemic patients. Choline influx rates were significantly increased and affinity of the transporter for choline reduced in dialysis patients' erythrocytes. Renal transplant and CRF patients showed variable influx rates which gave a significant negative correlation with creatinine clearance. These results show that there are selective abnormalities in some membrane transport system of the erythrocyte in patients with renal failure. The mechanism and possible significance of these changes are discussed.</p
    corecore