19,916 research outputs found

    Explicit computations of low lying eigenfunctions for the quantum trigonometric Calogero-Sutherland model related to the exceptional algebra E7

    Full text link
    In the previous paper math-ph/0507015 we have studied the characters and Clebsch-Gordan series for the exceptional Lie algebra E7 by relating them to the quantum trigonometric Calogero-Sutherland Hamiltonian with coupling constant K=1. Now we extend that approach to the case of general K

    Simultaneous analysis of elastic scattering and transfer/breakup channels for the 6He+208Pb reaction at energies near the Coulomb barrier

    Get PDF
    The elastic and alpha-production channels for the 6He+208Pb reaction are investigated at energies around the Coulomb barrier (E_{lab}=14, 16, 18, 22, and 27 MeV). The effect of the two-neutron transfer channels on the elastic scattering has been studied within the Coupled-Reaction-Channels (CRC) method. We find that the explicit inclusion of these channels allows a simultaneous description of the elastic data and the inclusive alpha cross sections at backward angles. Three-body Continuum-Discretized Coupled-Channels (CDCC) calculations are found to reproduce the elastic data, but not the transfer/breakup data. The trivially-equivalent local polarization potential (TELP) derived from the CRC and CDCC calculations are found to explain the features found in previous phenomenological optical model calculations for this system.Comment: 7 pages, 6 figures (replaced with updated version

    Study of star-forming galaxies in SDSS up to redshift 0.4: I. Metallicity evolution

    Full text link
    The chemical composition of the gas in galaxies versus cosmic time provides a very important tool for understanding galaxy evolution. Although there are many studies at high redshift, they are rather scarce at lower redshifts. However, low redshift studies can provide important clues about the evolution of galaxies, furnishing the required link between local and high redshift universe. In this work we focus on the metallicity of the gas of star-forming galaxies at low redshift, looking for signs of chemical evolution. To analyze the metallicity contents star-forming galaxies of similar luminosities and masses at different redshifts. With this purpose, we present a study of the metallicity of relatively massive (log(M_star/M_sun)>10.5) star forming galaxies from SDSS--DR5 (Sloan Digital Sky Survey--Data Release 5), using different redshift intervals from 0.04 to 0.4. We used data processed with the STARLIGHT spectral synthesis code, correcting the fluxes for dust extinction, estimating metallicities using the R_23 method, and segregating the samples with respect to the value of the [NII]6583/[OII]3727 line ratio in order to break the R_23 degeneracy selecting the upper branch. We analyze the luminosity and mass-metallicity relations, and the effect of the Sloan fiber diameter looking for possible biases. By dividing our redshift samples in intervals of similar magnitude and comparing them, significant signs of metallicity evolution are found. Metallicity correlates inversely with redshift: from redshift 0 to 0.4 a decrement of ~0.1 dex in 12+log(O/H) is found.Comment: 11 pages, 9 figures, Accepted for publication in A&

    FeNi-based magnetoimpedance multilayers: Tailoring of the softness by magnetic spacers

    Full text link
    The microstructure and magnetic properties of sputtered permalloy films and FeNi(170 nm)/X/FeNi(170 nm) (X=Co, Fe, Gd, Gd-Co) sandwiches were studied. Laminating of the thick FeNi film with various spacers was done in order to control the magnetic softness of FeNi-based multilayers. In contrast to the Co and Fe spacers, Gd and Gd-Co magnetic spacers improved the softness of the FeNi/X/FeNi sandwiches. The magnetoimpedance responses were measured for [FeNi/Ti(6 nm)] 2/FeNi and [FeNi/Gd(2 nm)] 2/FeNi multilayers in a frequency range of 1-500 MHz: for all frequencies under consideration the highest magnetoimpedance variation was observed for [FeNi/Gd(2 nm)] 2/FeNi multilayers. © 2012 American Institute of Physics

    A Newtonian model for the WASP-148 exoplanetary system enhanced with TESS and ground-based photometric observations

    Full text link
    The WASP-148 planetary system has a rare architecture with a transiting Saturn-mass planet on a tight orbit which is accompanied by a slightly more massive planet on a nearby outer orbit. Using new space-born photometry and ground-based follow-up transit observations and data available in literature, we performed modeling that accounts for gravitational interactions between both planets. Thanks to the new transit timing data for planet b, uncertainties of orbital periods and eccentricities for both planets were reduced relative to previously published values by a factor of 3-4. Variation in transit timing has an amplitude of about 20 minutes and can be easily followed-up with a 1-m class telescopes from the ground. An approximated transit ephemeris, which accounts for gravitational interactions with an accuracy up to 5 minutes, is provided. No signature of transits was found for planet c down to the Neptune-size regime. No other transiting companions were found down to a size of about 2.4 Earth radii for interior orbits. We notice, however, that the regime of terrestrial-size planets still remains unexplored in that system.Comment: Accepted for publication in Acta Astronomic

    Circularly polarized resonant soft x-ray diffraction study of helical magnetism in hexaferrite

    Full text link
    Magnetic spiral structures can exhibit ferroelectric moments as recently demonstrated in various multiferroic materials. In such cases the helicity of the magnetic spiral is directly correlated with the direction of the ferroelectric moment and measurement of the helicity of magnetic structures is of current interest. Soft x-ray resonant diffraction is particularly advantageous because it combines element selectivity with a large magnetic cross-section. We calculate the polarization dependence of the resonant magnetic x-ray cross-section (electric dipole transition) for the basal plane magnetic spiral in hexaferrite Ba0.8Sr1.2Zn2Fe12O22 and deduce its domain population using circular polarized incident radiation. We demonstrate there is a direct correlation between the diffracted radiation and the helicity of the magnetic spiral.Comment: 4 pages, 4 figure

    A Resonant soft x-ray powder diffraction study to determine the orbital ordering in A-site ordered SmBaMn2O6

    Full text link
    Soft X-ray resonant powder diffraction has been performed at the Mn L2,3 edges of A-site ordered SmBaMn2O6. The energy and polarization dependence of the (1/2 1/2 0) reflection provide direct evidence for a (x2-z2)/(y2-z2) type orbital ordering in contrast to the single layer manganite. The temperature dependence of the reflection indicates an orbital reorientation transition at 210 K, below which the charge and orbital ordered MnO2 sheets show AAAA type of stacking. The concurring reduction of the ferromagnetic super exchange correlations leads to further charge localization

    Geodetic implications on block formation and geodynamic domains in the South Shetland Islands, Antarctic Peninsula

    Get PDF
    The South Shetland Islands archipelago is dynamically complex due to its tectonic surroundings. Most islands are part of a formerly active volcanic arc, although Deception, Penguin and Bridgeman Islands, as well as several submarine volcanoes, are characterized by active back-arc volcanism. Geodetic benchmarks were deployed and the movement of the lithosphere to which they were fixed measured to provide geodynamic insight for the South Shetland Islands, Bransfield Basin and Antarctic Peninsula area based on surface deformation. These benchmarks' data add spatial and temporal coverage to previous results. The results reveal two different geodynamic patterns, each confined to a distinct part of the South Shetland Islands archipelago. The inferred absolute horizontal velocity vectors for the benchmarks in the northeastern part of the archipelago are consistent with the opening of the Bransfield Basin, while benchmark vectors in the southwestern part of the archipelago are similar to those of the benchmarks on the Antarctic Peninsula. In between, Snow, Deception and Livingston Islands represent a transition zone. In this area, the horizontal velocity vectors relative to the Antarctic plate shift northeastwards from N to NW. Furthermore, the South Shetland Islands benchmarks, except for that at Gibbs (Elephant) Islands, indicate subsidence, which might be a consequence of the slab roll-back at the South Shetland Trench. In contrast, the uplift revealed by the Antarctic Peninsula benchmarks suggests glacial isostatic adjustment after the Larson B ice-shelf breakup. (C) 2015 Elsevier B.V. All rights reserved
    corecore