10 research outputs found

    Basidiomycete DyPs: Genomic diversity, structural–functional aspects, reaction mechanism and environmental significance

    Get PDF
    The first enzyme with dye-decolorizing peroxidase (DyP) activity was described in 1999 from an arthroconidial culture of the fungus Bjerkandera adusta. However, the first DyP sequence had been deposited three years before, as a peroxidase gene from a culture of an unidentified fungus of the family Polyporaceae (probably Irpex lacteus). Since the first description, fewer than ten basidiomycete DyPs have been purified and characterized, but a large number of sequences are available from genomes. DyPs share a general fold and heme location with chlorite dismutases and other DyP-type related proteins (such as Escherichia coli EfeB), forming the CDE superfamily. Taking into account the lack of an evolutionary relationship with the catalase-peroxidase superfamily, the observed heme pocket similarities must be considered as a convergent type of evolution to provide similar reactivity to the enzyme cofactor. Studies on the Auricularia auricula-judae DyP showed that high-turnover oxidation of anthraquinone type and other DyP substrates occurs via long-range electron transfer from an exposed tryptophan (Trp377, conserved in most basidiomycete DyPs), whose catalytic radical was identified in the H2O2-activated enzyme. The existence of accessory oxidation sites in DyP is suggested by the residual activity observed after site-directed mutagenesis of the above tryptophan. DyP degradation of substituted anthraquinone dyes (such as Reactive Blue 5) most probably proceeds via typical one-electron peroxidase oxidations and product breakdown without a DyP-catalyzed hydrolase reaction. Although various DyPs are able to break down phenolic lignin model dimers, and basidiomycete DyPs also present marginal activity on nonphenolic dimers, a significant contribution to lignin degradation is unlikely because of the low activity on high redox-potential substratesThis work was supported by the INDOX (KBBE-2013-7-613549; www.indoxproject.eu) European project, the BIO2011-26694 (HIPOP) and CTQ2013-48287 projects of the Spanish Ministry of Economy and Competitiveness (MINECO), and the PRIN 2009-STNWX3 project of the Italian Ministry of Education, University and Research (MIUR). FJR-D thanks a Ramón y Cajal contract of MINECO. The authors thank Verónica Sáez-Jiménez for data on Reactive Blue 5 decolorization by VP and its heme-channel variants.Peer ReviewedPostprint (published version

    Arabidopsis thaliana as a model for the study of plant–virus co-evolution

    Get PDF
    Understanding plant–virus coevolution requires wild systems in which there is no human manipulation of either host or virus. To develop such a system, we analysed virus infection in six wild populations of Arabidopsis thaliana in Central Spain. The incidence of five virus species with different life-styles was monitored during four years, and this was analysed in relation to the demography of the host populations. Total virus incidence reached 70 per cent, which suggests a role of virus infection in the population structure and dynamics of the host, under the assumption of a host fitness cost caused by the infection. Maximum incidence occurred at early growth stages, and co-infection with different viruses was frequent, two factors often resulting in increased virulence. Experimental infections under controlled conditions with two isolates of the most prevalent viruses, cauliflower mosaic virus and cucumber mosaic virus, showed that there is genetic variation for virus accumulation, although this depended on the interaction between host and virus genotypes. Comparison of QST-based genetic differentiations between both host populations with FST genetic differentiation based on putatively neutral markers suggests different selection dynamics for resistance against different virus species or genotypes. Together, these results are compatible with a hypothesis of plant–virus coevolution

    Description of a non-canonical Mn(II)-oxidation site in peroxidases

    Get PDF
    A dye-decolorizing peroxidase (DyP) from Pleurotus ostreatus (PosDyP4) catalyzes the oxidation of Mn2+ to Mn3+, in the presence of H2O2, with an efficiency similar to the well known manganese peroxidases and versatile peroxidases from this and other white-rot fungi. PosDyP4 has been overexpressed in Escherichia coli as an active enzyme, and its crystal structure has been solved at 1.56 Å resolution. A combination of substrate diffusion simulations on the solved structure using the PELE software, electron paramagnetic resonance and site-directed mutagenesis led to identification of the residues involved in Mn2+ oxidation. The oxidation site in PosDyP4 is different to the conserved site in the other Mn-oxidizing peroxidases mentioned above, and it includes four acidic residues (three aspartates and one glutamate) located at the surface of the protein. Moreover, since the Mn2+ ion is not in direct contact with the heme propionates, a tyrosine residue participates in the electron transfer to the cofactor being the only essential individual residue for PosDyP4 oxidation of the metal ion. The four acidic residues contribute to Mn2+ binding in different extents, with the glutamate also involved in the initial electron transfer to the key tyrosine, as confirmed by the >50-fold decreased kcat after removing its side-chain carboxylic group. A second electron transfer pathway operates in PosDyP4 for the oxidation of aromatics and dyes starting at a surface tryptophan, as reported in other fungal and prokaryotic DyPs, and connecting with the final part of the Mn2+ oxidation route. Both tryptophanyl and tyrosyl radicals, potentially involved in catalysis, were detected by electron paramagnetic resonance of the native enzyme and its tryptophan-less variant, respectively

    Activation of the integrated stress response is a vulnerability for multidrug‐resistant FBXW7‐deficient cells

    Get PDF
    Abstract FBXW7 is one of the most frequently mutated tumor suppressors, deficiency of which has been associated with resistance to some anticancer therapies. Through bioinformatics and genome‐wide CRISPR screens, we here reveal that FBXW7 deficiency leads to multidrug resistance (MDR). Proteomic analyses found an upregulation of mitochondrial factors as a hallmark of FBXW7 deficiency, which has been previously linked to chemotherapy resistance. Despite this increased expression of mitochondrial factors, functional analyses revealed that mitochondria are under stress, and genetic or chemical targeting of mitochondria is preferentially toxic for FBXW7‐deficient cells. Mechanistically, the toxicity of therapies targeting mitochondrial translation such as the antibiotic tigecycline relates to the activation of the integrated stress response (ISR) in a GCN2 kinase‐dependent manner. Furthermore, the discovery of additional drugs that are toxic for FBXW7‐deficient cells showed that all of them unexpectedly activate a GCN2‐dependent ISR regardless of their accepted mechanism of action. Our study reveals that while one of the most frequent mutations in cancer reduces the sensitivity to the vast majority of available therapies, it renders cells vulnerable to ISR‐activating drugs

    Rational Enzyme Engineering Through Biophysical and Biochemical Modeling

    No full text
    Due to its importance in the pharmaceutical industry, ligand dynamic simulations have experienced a great expansion. Using all-atom models and cutting-edge hardware, one can perform nonbiased ligand migration, active site search, and binding studies. In this Letter, we demonstrate (and validate by PCR mutagenesis) how these techniques, when combined with quantum mechanics, open new possibilities in enzyme engineering. We provide a complete analysis where (1) biophysical simulations produce ligand diffusion and (2) biochemical modeling samples the chemical event. Using such broad analysis, we engineer a highly stable peroxidase activating the enzyme for new substrate oxidation after rational mutation of two nonconserved surface residues. In particular, we create a new surface-binding site, quantitatively predicting the in vitro change in oxidation rate obtained by mutagenic PCR and achieving a comparable specificity constant to active peroxidases

    Plasma‐driven in situ production of hydrogen peroxide for biocatalysis

    No full text
    Peroxidases and peroxygenases are promising classes of enzymes for biocatalysis because of their ability to carry out one‐electron oxidation reactions and stereoselective oxyfunctionalizations. However, industrial application is limited, as the major drawback is the sensitivity toward the required peroxide substrates. Herein, we report a novel biocatalysis approach to circumvent this shortcoming: in situ production of H2_2O2_2 by dielectric barrier discharge plasma. The discharge plasma can be controlled to produce hydrogen peroxide at desired rates, yielding desired concentrations. Using horseradish peroxidase, it is demonstrated that hydrogen peroxide produced by plasma treatment can drive the enzymatic oxidation of model substrates. Fungal peroxygenase is then employed to convert ethylbenzene to (R\it R)‐1‐phenylethanol with an ee of >96 % using plasma‐generated hydrogen peroxide. As direct treatment of the reaction solution with plasma results in reduced enzyme activity, the use of plasma‐treated liquid and protection strategies are investigated to increase total turnover. Technical plasmas present a noninvasive means to drive peroxide‐based biotransformations

    Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis

    No full text
    Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C. subvermispora and P. chrysosporium. Genes encoding manganese peroxidase numbered 13 and five in C. subvermispora and P. chrysosporium, respectively. In addition, the C. subvermispora genome contains at least seven genes predicted to encode laccases, whereas the P. chrysosporium genome contains none. We also observed expansion of the number of C. subvermispora desaturase-encoding genes putatively involved in lipid metabolism. Microarray-based transcriptome analysis showed substantial up-regulation of several desaturase and MnP genes in wood-containing medium. MS identified MnP proteins in C. subvermispora culture filtrates, but none in P. chrysosporium cultures. These results support the importance of MnP and a lignin degradation mechanism whereby cleavage of the dominant nonphenolic structures is mediated by lipid peroxidation products. Two C. subvermispora genes were predicted to encode peroxidases structurally similar to P. chrysosporium lignin peroxidase and, following heterologous expression in Escherichia coli, the enzymes were shown to oxidize high redox potential substrates, but not Mn2. Apart from oxidative lignin degradation, we also examined cellulolytic and hemicellulolytic systems in both fungi. In summary, the C. subvermispora genetic inventory and expression patterns exhibit increased oxidoreductase potential and diminished cellulolytic capability relative to P. chrysosporium

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present
    corecore