421 research outputs found

    Till death (or an intruder) do us part: intrasexual-competition in a monogamous Primate

    Get PDF
    Polygynous animals are often highly dimorphic, and show large sex-differences in the degree of intra-sexual competition and aggression, which is associated with biased operational sex ratios (OSR). For socially monogamous, sexually monomorphic species, this relationship is less clear. Among mammals, pair-living has sometimes been assumed to imply equal OSR and low frequency, low intensity intra-sexual competition; even when high rates of intra-sexual competition and selection, in both sexes, have been theoretically predicted and described for various taxa. Owl monkeys are one of a few socially monogamous primates. Using long-term demographic and morphological data from 18 groups, we show that male and female owl monkeys experience intense intra-sexual competition and aggression from solitary floaters. Pair-mates are regularly replaced by intruding floaters (27 female and 23 male replacements in 149 group-years), with negative effects on the reproductive success of both partners. Individuals with only one partner during their life produced 25% more offspring per decade of tenure than those with two or more partners. The termination of the pair-bond is initiated by the floater, and sometimes has fatal consequences for the expelled adult. The existence of floaters and the sporadic, but intense aggression between them and residents suggest that it can be misleading to assume an equal OSR in socially monogamous species based solely on group composition. Instead, we suggest that sexual selection models must assume not equal, but flexible, context-specific, OSR in monogamous species.Wenner-Gren Foundation, L.S.B. Leakey Foundation, the National Geographic Society, National Science Foundation (BCS- 0621020), the University of Pennsylvania Research Foundation and the Zoological Society of San Diego, German Science Foundation (HU 1746-2/1

    Moonstruck Primates: Owl Monkeys (Aotus) Need Moonlight for Nocturnal Activity in Their Natural Environment

    Get PDF
    Primates show activity patterns ranging from nocturnality to diurnality, with a few species showing activity both during day and night. Among anthropoids (monkeys, apes and humans), nocturnality is only present in the Central and South American owl monkey genus Aotus. Unlike other tropical Aotus species, the Azara's owl monkeys (A. azarai) of the subtropics have switched their activity pattern from strict nocturnality to one that also includes regular diurnal activity. Harsher climate, food availability, and the lack of predators or diurnal competitors, have all been proposed as factors favoring evolutionary switches in primate activity patterns. However, the observational nature of most field studies has limited an understanding of the mechanisms responsible for this switch in activity patterns. The goal of our study was to evaluate the hypothesis that masking, namely the stimulatory and/or inhibitory/disinhibitory effects of environmental factors on synchronized circadian locomotor activity, is a key determinant of the unusual activity pattern of Azara's owl monkeys. We use continuous long-term (6–18 months) 5-min-binned activity records obtained with actimeter collars fitted to wild owl monkeys (n = 10 individuals) to show that this different pattern results from strong masking of activity by the inhibiting and enhancing effects of ambient luminance and temperature. Conclusive evidence for the direct masking effect of light is provided by data showing that locomotor activity was almost completely inhibited when moonlight was shadowed during three lunar eclipses. Temperature also negatively masked locomotor activity, and this masking was manifested even under optimal light conditions. Our results highlight the importance of the masking of circadian rhythmicity as a determinant of nocturnality in wild owl monkeys and suggest that the stimulatory effects of dim light in nocturnal primates may have been selected as an adaptive response to moonlight. Furthermore, our data indicate that changes in sensitivity to specific environmental stimuli may have been an essential key for evolutionary switches between diurnal and nocturnal habits in primates

    Correlates of genetic monogamy in socially monogamous mammals: insights from Azara's owl monkeys

    Get PDF
    Understanding the evolution of mating systems, a central topic in evolutionary biology for more than 50 years, requires examining the genetic consequences of mating and the relationships between social systems and mating systems. Among pair-living mammals, where genetic monogamy is extremely rare, the extent of extra-group paternity rates has been associated withmale participation in infant care, strength of the pair bond and length of the breeding season. This study evaluated the relationship between two of those factors and the genetic mating system of socially monogamous mammals, testing predictions that male care and strength of pair bond would be negatively correlated with rates of extra-pair paternity (EPP). Autosomal microsatellite analyses provide evidence for genetic monogamy in a pair-living primate with bi-parental care, the Azara’s owl monkey (Aotus azarae). A phylogenetically corrected generalized least square analysis was used to relate male care and strength of the pair bond to their genetic mating system (i.e. proportions of EPP) in 15 socially monogamous mammalian species. The intensity of male care was correlated with EPP rates in mammals, while strength of pair bond failed to reach statistical significance. Our analyses showthat, once social monogamy has evolved, paternal care, and potentially also close bonds, may facilitate the evolution of genetic monogamy.German Science Foundation (HU 1746/2-1); Wenner-Gren Foundation; L.S.B. Leakey Foundation;National Geographic Society; National Science Foundation (BCS-0621020, 1219368, and 1232349); the University of Pennsylvania Research Foundation; the Zoological Society of San Dieg

    Fundamental Problems with the Cooperative Breeding Hypothesis. A reply to Burkart & Van Schaik

    Get PDF
    This is the final version of the article. Available from Wiley via the DOI in this record.The cooperative breeding hypothesis (CBH) states that cooperative breeding, a social system in which group members help to rear offspring that are not their own, has important socio-cognitive consequences. Thornton & McAuliffe (2015; henceforth T&M) critiqued this idea on both conceptual and empirical grounds, arguing that there is no reason to predict that cooperative breeding should favour the evolution of enhanced social cognition or larger brains, nor any clear evidence that it does. In response to this critique, Burkart & van Schaik (2016 henceforth B&vS) attempt to clarify the causal logic of the CBH, revisit the data and raise the possibility that the hypothesis may only apply to primates. They concede that cooperative breeding is unlikely to generate selection pressures for enhanced socio-cognitive abilities, but argue instead that the CBH operates purely through cooperative breeding reducing social or energetic constraints. Here, we argue that this revised hypothesis is also untenable because: (1) it cannot explain why resources so released would be allocated to cognitive traits per se rather than any other fitness-related traits, (2) key assumptions are inconsistent with available evidence and (3) ambiguity regarding the predictions leaves it unclear what evidence would be required to falsify it. Ultimately, the absence of any compelling evidence that cooperative breeding is associated with elevated cognitive ability or large brains (indeed data suggest the opposite is true in non-human primates) also casts doubt on the capacity of the CBH to explain variation in cognitive traits.A.T. was supported by a BBSRC David Phillips Fellowship (BB/H021817/1) and a grant from the ESRC (ES/M006042/1)

    Building Babies - Chapter 16

    Get PDF
    In contrast to birds, male mammals rarely help to raise the offspring. Of all mammals, only among rodents, carnivores, and primates, males are sometimes intensively engaged in providing infant care (Kleiman and Malcolm 1981). Male caretaking of infants has long been recognized in nonhuman primates (Itani 1959). Given that infant care behavior can have a positive effect on the infant’s development, growth, well-being, or survival, why are male mammals not more frequently involved in “building babies”? We begin the chapter defining a few relevant terms and introducing the theory and hypotheses that have historically addressed the evolution of paternal care. We then review empirical findings on male care among primate taxa, before focusing, in the final section, on our own work on paternal care in South American owl monkeys (Aotus spp.). We conclude the chapter with some suggestions for future studies.Deutsche Forschungsgemeinschaft (HU 1746/2-1) Wenner-Gren Foundation, the L.S.B. Leakey Foundation, the National Geographic Society, the National Science Foundation (BCS-0621020), the University of Pennsylvania Research Foundation, the Zoological Society of San Dieg

    Can colour vision re-evolve? Variation in the X-linked opsin locus of cathemeral Azara’s owl monkeys (Aotus azarae azarae)

    Full text link
    Background: Do evolutionary specializations lead to evolutionary constraint? This appears plausible, particularly when specialization leads to loss of complex adaptations. In the owl monkey lineage, nocturnality clearly arose from a diurnal ancestor. This behavioural shift was accompanied by morphological changes in the eye and orbit and complete loss of colour vision via missense mutations in the gene encoding the short-wave sensitive visual pigment (SWS opsin). Interestingly, at least one subspecies of owl monkey, Azara’s owl monkey (Aotus azarae azarae), has regained activity in daylight. Given that all primate species that are active in daylight, including primarily diurnal species and species that are active during both day and night, have at least dichromatic colour vision, it seems reasonable to propose that dichromacy would be adaptive in A. a. azarae. With a disabled SWS opsin, the main avenue available for Azara’s owl monkeys to re-evolve colour vision is via a polymorphism in the intact X-linked opsin locus, which commonly occurs in other New World monkeys. To examine this possibility we assayed variation in the X-linked opsin of A. a. azarae, focusing on the three exons (3, 4 and 5) that control spectral sensitivity. Results: We found low opsin genetic variation on a population level, and no differences at the three main sites that lead to variation in spectral sensitivity in the opsins of other New World monkeys. Two rare alleles with single amino acid variants are segregating in the population, but previous functional studies indicate that these are unlikely to affect spectral sensitivity. Conclusions: Genetic constraint on the re-evolution of colour vision is likely operating in Azara’s owl monkey, which may affect the niche that this subspecies is able to occupy

    Impending extinction crisis of the world's primates: why primates matter

    Get PDF
    Non-human primates, our closest biological relatives, play important roles in the livelihoods, cultures and religions of many societies, and offer unique insights into human evolution, biology, behavior and the threat of emerging diseases. They are an essential component of tropical biodiversity, contributing to forest regeneration and ecosystem health. Current information shows the existence of 504 species in 79 genera distributed in the Neotropics, mainland Africa, Madagascar, and Asia. Alarmingly, ~60% of primate species are now threatened with extinction and ~75% have declining populations. This situation is the result of escalating anthropogenic pressures on primates and their habitats – mainly global and local market demands leading to extensive habitat loss through the expansion of industrial agriculture, large-scale cattle ranching, logging, oil and gas drilling, mining, dam building, and the construction of new road networks in primate range regions. Other important drivers are increased bushmeat hunting and the illegal trade of primates as pets and primate body parts, along with emerging threats such as climate change and anthroponotic diseases. Often, these pressures act in synergy, exacerbating primate population declines. Given that primate range regions overlap extensively with a large, and rapidly growing, human population characterized by high levels of poverty, global attention is needed immediately to reverse the looming risk of primate extinctions and to attend to local human needs in sustainable ways. Raising global scientific and public awareness of the plight of the world’s primates and the costs of their loss to ecosystem health and human society is imperative

    Downregulation of IRS-1 in adipose tissue of offspring of obese mice is programmed cell-autonomously through post-transcriptional mechanisms.

    Get PDF
    We determined the effects of maternal diet-induced obesity on offspring adipose tissue insulin signalling and miRNA expression in the aetiology of insulin resistance in later life. Although body composition and glucose tolerance of 8-week-old male offspring of obese dams were not dysregulated, serum insulin was significantly (p<0.05) elevated. Key insulin signalling proteins in adipose tissue were down-regulated, including the insulin receptor, catalytic (p110β) and regulatory (p85α) subunits of PI3K as well as AKT1 and 2 (all p<0.05). The largest reduction observed was in IRS-1 protein (p<0.001), which was regulated post-transcriptionally. Concurrently, miR-126, which targets IRS-1, was up-regulated (p<0.05). These two features were maintained in isolated primary pre-adipocytes and differentiated adipocytes in-vitro. We have therefore established that maternal diet-induced obesity programs adipose tissue insulin resistance. We hypothesise that maintenance of the phenotype in-vitro strongly suggests that this mechanism is cell autonomous and may drive insulin resistance in later life
    corecore