48 research outputs found
Passive Behavior and Passivity Breakdown of AISI 304 in LiBr Solutions through Scanning Electrochemical Microscopy
The passive behavior and passivity breakdown of AISI 304 stainless steel in LiBr solutions has been investigated by means of scanning electrochemical microscopy (SECM). The sample generation - tip collection (SG-TC) mode was used to operate the SECM and the tip potential was biased to detect the electroactive species. The evolution of the current at the ultramicroelectrode tip with the applied potential within the passive range was followed at different LiBr concentrations. Results show that the absolute value of the current at the tip increases with the applied potential. Additionally, SECM was also used to detect stable pits formed on the stainless steel surface in a 0.2 M LiBr solution. The results show clear evidence of the presence of high amounts of other reducible species (metal cations) apart from oxygen. Also, the dish-shape morphology of the pits observed using Confocal Laser Scanning Microscopy will be discussed in relation to the kinetics of the reactions observed using SECM. (c) 2014 The Electrochemical Society. All rights reserved.The authors would like to express their gratitude to the Generalitat Valenciana for its help in the SECM acquisition (PPC/2011/013) and in the CLSM acquisition (MY08/ISIRM/S/100) and to Dr. Asuncion Jaime for her translation assistance.Fernández Domene, RM.; Sánchez Tovar, R.; García Antón, J. (2014). Passive Behavior and Passivity Breakdown of AISI 304 in LiBr Solutions through Scanning Electrochemical Microscopy. Journal of The Electrochemical Society. 161(12):565-572. https://doi.org/10.1149/2.1051412jesS56557216112Cobb Harold M. (Ed.), Steel Products Manual: Stainless Steels, Iron & Steel Society, 1999.Schweitzer P. A. , Corrosion Engineering Handbook: Fundamentals of Metallic Corrosion, CRC Press, Boca Ratón, FL., 2007.Hakiki, N. B., Boudin, S., Rondot, B., & Da Cunha Belo, M. (1995). The electronic structure of passive films formed on stainless steels. Corrosion Science, 37(11), 1809-1822. doi:10.1016/0010-938x(95)00084-wWijesinghe, T. L. S. L., & Blackwood, D. J. (2008). Photocurrent and capacitance investigations into the nature of the passive films on austenitic stainless steels. Corrosion Science, 50(1), 23-34. doi:10.1016/j.corsci.2007.06.009Hakiki, N. E. (1998). Semiconducting Properties of Passive Films Formed on Stainless Steels. Journal of The Electrochemical Society, 145(11), 3821. doi:10.1149/1.1838880Olefjord, I. (1985). Surface Composition of Stainless Steels during Anodic Dissolution and Passivation Studied by ESCA. Journal of The Electrochemical Society, 132(12), 2854. doi:10.1149/1.2113683Lothongkum, G., Chaikittisilp, S., & Lothongkum, A. . (2003). XPS investigation of surface films on high Cr-Ni ferritic and austenitic stainless steels. Applied Surface Science, 218(1-4), 203-210. doi:10.1016/s0169-4332(03)00600-7Freire, L., Carmezim, M. J., Ferreira, M. G. S., & Montemor, M. F. (2010). The passive behaviour of AISI 316 in alkaline media and the effect of pH: A combined electrochemical and analytical study. Electrochimica Acta, 55(21), 6174-6181. doi:10.1016/j.electacta.2009.10.026Roberge P. R. , Corrosion Engineering. Principles and Practice, 1st. ed., McGraw-Hill, New York, NY, 2008.Wipf, D. O. (1994). Initiation and study of localized corrosion by scanning electrochemical microscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 93, 251-261. doi:10.1016/0927-7757(94)02872-9Casillas, N. (1994). Pitting Corrosion of Titanium. Journal of The Electrochemical Society, 141(3), 636. doi:10.1149/1.2054783Basame, S. B., & White, H. S. (1995). Scanning electrochemical microscopy of native titanium oxide films. Mapping the potential dependence of spatially-localized electrochemical reactions. The Journal of Physical Chemistry, 99(44), 16430-16435. doi:10.1021/j100044a034Still, J. W. (1997). Breakdown of the Iron Passive Layer by Use of the Scanning Electrochemical Microscope. Journal of The Electrochemical Society, 144(8), 2657. doi:10.1149/1.1837879Zhu, Y. (1997). Scanning Electrochemical Microscopic Observation of a Precursor State to Pitting Corrosion of Stainless Steel. Journal of The Electrochemical Society, 144(3), L43. doi:10.1149/1.1837487Basame, S. B., & White, H. S. (1998). Scanning Electrochemical Microscopy: Measurement of the Current Density at Microscopic Redox-Active Sites on Titanium. The Journal of Physical Chemistry B, 102(49), 9812-9819. doi:10.1021/jp982088xWilliams, D. E. (1998). Elucidation of a Trigger Mechanism for Pitting Corrosion of Stainless Steels Using Submicron Resolution Scanning Electrochemical and Photoelectrochemical Microscopy. Journal of The Electrochemical Society, 145(8), 2664. doi:10.1149/1.1838697Lister, T. E., & Pinhero, P. J. (2002). Scanning Electrochemical Microscopy Study of Corrosion Dynamics on Type 304 Stainless Steel. Electrochemical and Solid-State Letters, 5(11), B33. doi:10.1149/1.1510621Lister, T. E., & Pinhero, P. J. (2003). The effect of localized electric fields on the detection of dissolved sulfur species from Type 304 stainless steel using scanning electrochemical microscopy. Electrochimica Acta, 48(17), 2371-2378. doi:10.1016/s0013-4686(03)00228-7González-Garcı́a, Y., Burstein, G. ., González, S., & Souto, R. . (2004). Imaging metastable pits on austenitic stainless steel in situ at the open-circuit corrosion potential. Electrochemistry Communications, 6(7), 637-642. doi:10.1016/j.elecom.2004.04.018Souto, R. M., González-Garcı́a, Y., & González, S. (2005). In situ monitoring of electroactive species by using the scanning electrochemical microscope. Application to the investigation of degradation processes at defective coated metals. Corrosion Science, 47(12), 3312-3323. doi:10.1016/j.corsci.2005.07.005Völker, E., Inchauspe, C. G., & Calvo, E. J. (2006). Scanning electrochemical microscopy measurement of ferrous ion fluxes during localized corrosion of steel. Electrochemistry Communications, 8(1), 179-183. doi:10.1016/j.elecom.2005.10.003Gabrielli, C., Joiret, S., Keddam, M., Perrot, H., Portail, N., Rousseau, P., & Vivier, V. (2007). A SECM assisted EQCM study of iron pitting. Electrochimica Acta, 52(27), 7706-7714. doi:10.1016/j.electacta.2007.03.008Yin, Y., Niu, L., Lu, M., Guo, W., & Chen, S. (2009). In situ characterization of localized corrosion of stainless steel by scanning electrochemical microscope. Applied Surface Science, 255(22), 9193-9199. doi:10.1016/j.apsusc.2009.07.003Santana, J. J., González-Guzmán, J., Fernández-Mérida, L., González, S., & Souto, R. M. (2010). Visualization of local degradation processes in coated metals by means of scanning electrochemical microscopy in the redox competition mode. Electrochimica Acta, 55(15), 4488-4494. doi:10.1016/j.electacta.2010.02.091González-García, Y., Santana, J. J., González-Guzmán, J., Izquierdo, J., González, S., & Souto, R. M. (2010). Scanning electrochemical microscopy for the investigation of localized degradation processes in coated metals. Progress in Organic Coatings, 69(2), 110-117. doi:10.1016/j.porgcoat.2010.04.006Yuan, Y., Li, L., Wang, C., & Zhu, Y. (2010). Study of the effects of hydrogen on the pitting processes of X70 carbon steel with SECM. Electrochemistry Communications, 12(12), 1804-1807. doi:10.1016/j.elecom.2010.10.031Aouina, N., Balbaud-Célérier, F., Huet, F., Joiret, S., Perrot, H., Rouillard, F., & Vivier, V. (2011). Single pit initiation on 316L austenitic stainless steel using scanning electrochemical microscopy. Electrochimica Acta, 56(24), 8589-8596. doi:10.1016/j.electacta.2011.07.044Bard A. J. Mirkin M. V. (Eds.), Scanning Electrochemical Microscopy, 1st. ed., Marcel Dekker, New York, NJ, 2001.Kaneko, M., & Isaacs, H. . (2000). Pitting of stainless steel in bromide, chloride and bromide/chloride solutions. Corrosion Science, 42(1), 67-78. doi:10.1016/s0010-938x(99)00056-6Frankel, G. S. (1998). Pitting Corrosion of Metals. Journal of The Electrochemical Society, 145(6), 2186. doi:10.1149/1.1838615Kaneko, M., & Isaacs, H. S. (2002). Effects of molybdenum on the pitting of ferritic- and austenitic-stainless steels in bromide and chloride solutions. Corrosion Science, 44(8), 1825-1834. doi:10.1016/s0010-938x(02)00003-3Abd El Meguid, E. A., & Mahmoud, N. A. (2003). Inhibition of Bromide-Pitting Corrosion of Type 904L Stainless Steel. CORROSION, 59(2), 104-111. doi:10.5006/1.3277539Anderko, A., & Young, R. D. (2000). Model for Corrosion of Carbon Steel in Lithium Bromide Absorption Refrigeration Systems. CORROSION, 56(5), 543-555. doi:10.5006/1.3280559Chau, D. S., Wood, B. D., Berman, N. S., & Kim, K. J. (1993). Solubility of oxygen in aqueous lithium bromide using electrochemical technique. International Communications in Heat and Mass Transfer, 20(5), 643-652. doi:10.1016/0735-1933(93)90076-8Macdonald, D. D. (1992). The Point Defect Model for the Passive State. Journal of The Electrochemical Society, 139(12), 3434. doi:10.1149/1.2069096Paola, A. D. (1989). Semiconducting properties of passive films on stainless steels. Electrochimica Acta, 34(2), 203-210. doi:10.1016/0013-4686(89)87086-0Hakiki, N. E., Montemor, M. F., Ferreira, M. G. S., & da Cunha Belo, M. (2000). Semiconducting properties of thermally grown oxide films on AISI 304 stainless steel. Corrosion Science, 42(4), 687-702. doi:10.1016/s0010-938x(99)00082-7Carmezim, M. J., Simões, A. M., Figueiredo, M. O., & Da Cunha Belo, M. (2002). Electrochemical behaviour of thermally treated Cr-oxide films deposited on stainless steel. Corrosion Science, 44(3), 451-465. doi:10.1016/s0010-938x(01)00076-2Sharma S. K. , Green Corrosion Chemistry and Engineering: Opportunities and Challenges, Wiley-VCH Verlag GmbH & Co., First Edition, Germany, 2012.Venkatraman, M. S., Cole, I. S., & Emmanuel, B. (2011). Corrosion under a porous layer: A porous electrode model and its implications for self-repair. Electrochimica Acta, 56(24), 8192-8203. doi:10.1016/j.electacta.2011.06.020Thomas, S., Cole, I. S., Sridhar, M., & Birbilis, N. (2013). Revisiting zinc passivation in alkaline solutions. Electrochimica Acta, 97, 192-201. doi:10.1016/j.electacta.2013.03.008Gao, S., Dong, C., Luo, H., Xiao, K., Pan, X., & Li, X. (2013). Scanning electrochemical microscopy study on the electrochemical behavior of CrN film formed on 304 stainless steel by magnetron sputtering. Electrochimica Acta, 114, 233-241. doi:10.1016/j.electacta.2013.10.009Lu, G., Cooper, J. S., & McGinn, P. J. (2007). SECM imaging of electrocatalytic activity for oxygen reduction reaction on thin film materials. Electrochimica Acta, 52(16), 5172-5181. doi:10.1016/j.electacta.2007.02.022Song C. Zhang J. , Electrocatalytic Oxygen Reduction Reaction, in: J. Zhang (Ed.), PEM Fuel Cell Electrocatalysts and Catalyst Layers, Ch. 2, Springer, London, 2008, p. 89.Macdonald, D. D. (1999). Passivity–the key to our metals-based civilization. Pure and Applied Chemistry, 71(6), 951-978. doi:10.1351/pac199971060951Macdonald, D. D., Rifaie, M. A., & Engelhardt, G. R. (2001). New Rate Laws for the Growth and Reduction of Passive Films. Journal of The Electrochemical Society, 148(9), B343. doi:10.1149/1.1385818Macdonald, D. D. (2006). On the Existence of Our Metals-Based Civilization. Journal of The Electrochemical Society, 153(7), B213. doi:10.1149/1.2195877Marconnet, C., Wouters, Y., Miserque, F., Dagbert, C., Petit, J.-P., Galerie, A., & Féron, D. (2008). Chemical composition and electronic structure of the passive layer formed on stainless steels in a glucose-oxidase solution. Electrochimica Acta, 54(1), 123-132. doi:10.1016/j.electacta.2008.02.070Rhode, S., Kain, V., Raja, V. S., & Abraham, G. J. (2013). Factors affecting corrosion behavior of inclusion containing stainless steels: A scanning electrochemical microscopic study. Materials Characterization, 77, 109-115. doi:10.1016/j.matchar.2013.01.006Newman, R. C., & Franz, E. M. (1984). Growth and Repassivation of Single Corrosion Pits in Stainless Steel. CORROSION, 40(7), 325-330. doi:10.5006/1.3593930Simões, A. M., Bastos, A. C., Ferreira, M. G., González-García, Y., González, S., & Souto, R. M. (2007). Use of SVET and SECM to study the galvanic corrosion of an iron–zinc cell. Corrosion Science, 49(2), 726-739. doi:10.1016/j.corsci.2006.04.021Beck, T. R. (1979). Occurrence of Salt Films during Initiation and Growth of Corrosion Pits. Journal of The Electrochemical Society, 126(10), 1662. doi:10.1149/1.2128772Alkire, R. C., & Wong, K. P. (1988). The corrosion of single pits on stainless steel in acidic chloride solution. Corrosion Science, 28(4), 411-421. doi:10.1016/0010-938x(88)90060-1Bastos, A. C., Simões, A. M., González, S., González-García, Y., & Souto, R. M. (2004). Imaging concentration profiles of redox-active species in open-circuit corrosion processes with the scanning electrochemical microscope. Electrochemistry Communications, 6(11), 1212-1215. doi:10.1016/j.elecom.2004.09.022Böhni H. , Localized Corrosion of Passive Metals, in: Winston Revie R. (Ed.), Uhlig's Corrosion Handbook, 2nd ed., Ch. 10, Wiley Interscience, New York, 2000.Leiva-García, R., García-Antón, J., & Muñoz-Portero, M. J. (2010). Contribution to the elucidation of corrosion initiation through confocal laser scanning microscopy (CLSM). Corrosion Science, 52(6), 2133-2142. doi:10.1016/j.corsci.2010.02.034Laycock, N. J., & Newman, R. C. (1997). Localised dissolution kinetics, salt films and pitting potentials. Corrosion Science, 39(10-11), 1771-1790. doi:10.1016/s0010-938x(97)00049-8Moayed, M. H., & Newman, R. C. (2006). The Relationship Between Pit Chemistry and Pit Geometry Near the Critical Pitting Temperature. Journal of The Electrochemical Society, 153(8), B330. doi:10.1149/1.2210670Ernst, P., & Newman, R. . (2002). Pit growth studies in stainless steel foils. I. Introduction and pit growth kinetics. Corrosion Science, 44(5), 927-941. doi:10.1016/s0010-938x(01)00133-0Ernst, P., Laycock, N. J., Moayed, M. H., & Newman, R. C. (1997). The mechanism of lacy cover formation in pitting. Corrosion Science, 39(6), 1133-1136. doi:10.1016/s0010-938x(97)00043-7Sun, D., Jiang, Y., Tang, Y., Xiang, Q., Zhong, C., Liao, J., & Li, J. (2009). Pitting corrosion behavior of stainless steel in ultrasonic cell. Electrochimica Acta, 54(5), 1558-1563. doi:10.1016/j.electacta.2008.09.056Ren, J., & Zuo, Y. (2005). The growth mechanism of pits in NaCl solution under anodic films on aluminum. Surface and Coatings Technology, 191(2-3), 311-316. doi:10.1016/j.surfcoat.2004.04.05
Study of the sensitisation process of a duplex stainless steel (UNS 1.4462) by means of confocal microscopy and localised electrochemical techniques
When duplex stainless steels are heated, they can become sensitised and intermetallic phases can appear. In this work, samples of duplex stainless steel, UNS 1.4462, have been heated (850 degrees C for 1 and 2 h) in a heating unit that can be accommodated to a confocal microscope in order to study the morphological changes in-situ. The electrochemical behaviour of the samples has been analysed by means of conventional and localised electrochemical techniques. According to the results, there is a general decrease in the steel resistance to localised corrosion; this decrease can be related to defects in the formed passive film.We wish to express our gratitude to MICINN (CTQ2009-07518), to Universitat Politecnica de Valencia (CEI-01-11), to the Generalitat Valenciana for its help in the CLSM acquisition (MY08/ISIRM/S/100), to Professor Alda Simoes and Andreia Marques for the help on LEIS measurements and to Dr. Asuncion Jaime for her translation assistance.Leiva García, R.; Fernandes, JS.; Muñoz-Portero, M.; Garcia-Anton, J. (2015). Study of the sensitisation process of a duplex stainless steel (UNS 1.4462) by means of confocal microscopy and localised electrochemical techniques. Corrosion Science. 94:327-341. https://doi.org/10.1016/j.corsci.2015.02.016S3273419
The reference site collaborative network of the european innovation partnership on active and healthy ageing
Seventy four Reference Sites of the European Innovation
Partnership on Active and Healthy Ageing (EIP on AHA)
have been recognised by the European Commission in
2016 for their commitment to excellence in investing and
scaling up innovative solutions for active and healthy
ageing. The Reference Site Collaborative Network
(RSCN) brings together the EIP on AHA Reference Sites
awarded by the European Commission, and Candidate
Reference Sites into a single forum. The overarching goals
are to promote cooperation, share and transfer good
practice and solutions in the development and scaling up
of health and care strategies, policies and service delivery
models, while at the same time supporting the action
groups in their work. The RSCN aspires to be recognized
by the EU Commission as the principal forum and
authority representing all EIP on AHA Reference Sites.
The RSCN will contribute to achieve the goals of the EIP
on AHA by improving health and care outcomes for
citizens across Europe, and the development of sustainable
economic growth and the creation of jobs
Computational characterisation of the modulation of membrane proteins by lipids
Experimental evidence has shown a close correlation between the composition and physical state of the membrane bilayer and glucose transport activity via the glucose transporter GLUT1. Cooling alters the membrane lipids from fluid to gel phase and also causes a large decrease in net glucose transport rate. The goal of this study is to investigate how the physical phase of the membrane alters glucose transporter structural dynamics using molecular dynamics simulations. Simulations from an initial fluid to gel phase reduces the size of the cavities and tunnels traversing the protein connecting the external regions of the transporter and the central binding site. These effects can be ascribed solely to membrane structural changes since in silico cooling of the membrane alone, whilst maintaining the higher protein temperature, shows very similar protein structural and dynamic changes to those with uniform cooling. These results demonstrate that the protein structure is sensitive to the membrane phase and have implications on how transmembrane protein structures are responsive to their physical environment
Membrane Phase-Dependent Occlusion of Intramolecular GLUT1 Cavities Demonstrated by Simulations
Experimental evidence has shown a close correlation between the composition and physical state of the membrane bilayer and glucose transport activity via the glucose transporter GLUT1. Cooling alters the membrane lipids from the fluid to gel phase, and also causes a large decrease in the net glucose transport rate. The goal of this study is to investigate how the physical phase of the membrane alters glucose transporter structural dynamics using molecular-dynamics simulations. Simulations from an initial fluid to gel phase reduce the size of the cavities and tunnels traversing the protein and connecting the external regions of the transporter and the central binding site. These effects can be ascribed solely to membrane structural changes since in silico cooling of the membrane alone, while maintaining the higher protein temperature, shows protein structural and dynamic changes very similar to those observed with uniform cooling. These results demonstrate that the protein structure is sensitive to the membrane phase, and have implications for how transmembrane protein structures respond to their physical environment
Chapter 13. The Russian Factor in Belarusian Self-Perception
The integration project as a political undertaking and as a factor of mass consciousness is often considered as an evidence of Belarusians’ reluctance to preserve their independence. “Escape into common destiny, which is manifested in the search of a state to be ‘integrated’ with, turns Belarus into an escape from destiny and responsibility, and, in the end, into ‘escape from liberty’,” writes Belarusian political scientist Rouda. This is an escape from one’s own independence and, by the same..
Molecular Dynamics Simulations and Neutron Reflectivity as an Effective Approach To Characterize Biological Membranes and Related Macromolecular Assemblies
In combination with other spectroscopy, microscopy, and scattering techniques, neutron reflectivity is a powerful tool to characterize biological systems. Specular reflection of neutrons provides structural information at the nanometer and subnanometer length scales, probing the composition and organization of layered materials. Currently, analysis of neutron reflectivity data involves several simplifying assumptions about the structure of the sample under study, affecting the extraction and interpretation of information from the experimental data. Computer simulations can be used as a source of structural and dynamic data with atomic resolution. We present a novel tool to compare the structural properties determined by neutron reflectivity experiments with those obtained from molecular simulations. This tool allows benchmarking the ability of molecular dynamics simulations to reproduce experimental data, but it also promotes unbiased interpretation of experimentally determined quantities. Two application examples are presented to illustrate the capabilities of the new tool. The first example is the generation of reflectivity profiles for a 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayer from molecular dynamics simulations using data from both atomistic and coarse-grained models, and comparison with experimentally measured data. The second example is the calculation of lipid volume changes with temperature and composition from all atoms simulations of single and mixed 1,2-di-palmitoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine (DPPC) bilayers