5,965 research outputs found

    Selective aqueous acetylation controls the photoanomerization of α-cytidine-5′-phosphate

    Get PDF
    Nucleic acids are central to information transfer and replication in living systems, providing the molecular foundations of Darwinian evolution. Here we report that prebiotic acetylation of the non-natural, but prebiotically plausible, ribonucleotide α-cytidine-5′-phosphate, selectively protects the vicinal diol moiety. Vicinal diol acetylation blocks oxazolidinone formation and prevents C2′-epimerization upon irradiation with UV-light. Consequently, acetylation enhances (4-fold) the photoanomerization of α-cytidine-5′-phosphate to produce the natural β-pyrimidine ribonucleotide-5′-phosphates required for RNA synthesis

    Chemical trends in the Galactic halo from APOGEE data

    Get PDF
    Indexación: Web of Science; Scopus.The galaxy formation process in the A cold dark matter scenario can be constrained from the analysis of stars in the Milky Way's halo system. We examine the variation of chemical abundances in distant halo stars observed by the Apache Point Observatory Galactic Evolution Experiment ( APOGEE), as a function of distance from the Galactic Centre ( r) and iron abundance ([M/H]), in the range 5 less than or similar to r less than or similar to 30 kpc and - 2.5 15 kpc and [M/H] > - 1.1 (larger in the case of O, Mg, and S) with respect to the nearest halo stars. This result confirms previous claims for low-alpha stars found at larger distances. Chemical differences in elements with other nucleosynthetic origins (Ni, K, Na, and Al) are also detected. C and N do not provide reliable information about the interstellar medium from which stars formed because our sample comprises red giant branch and asymptotic giant branch stars and can experience mixing of material to their surfaces.https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stw286

    The dysbindin-containing complex (BLOC-1) in brain: developmental regulation, interaction with SNARE proteins and role in neurite outgrowth.

    Get PDF
    Previous studies have implicated DTNBP1 as a schizophrenia susceptibility gene and its encoded protein, dysbindin, as a potential regulator of synaptic vesicle physiology. In this study, we found that endogenous levels of the dysbindin protein in the mouse brain are developmentally regulated, with higher levels observed during embryonic and early postnatal ages than in young adulthood. We obtained biochemical evidence indicating that the bulk of dysbindin from brain exists as a stable component of biogenesis of lysosome-related organelles complex-1 (BLOC-1), a multi-subunit protein complex involved in intracellular membrane trafficking and organelle biogenesis. Selective biochemical interaction between brain BLOC-1 and a few members of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) superfamily of proteins that control membrane fusion, including SNAP-25 and syntaxin 13, was demonstrated. Furthermore, primary hippocampal neurons deficient in BLOC-1 displayed neurite outgrowth defects. Taken together, these observations suggest a novel role for the dysbindin-containing complex, BLOC-1, in neurodevelopment, and provide a framework for considering potential effects of allelic variants in DTNBP1--or in other genes encoding BLOC-1 subunits--in the context of the developmental model of schizophrenia pathogenesis

    Discriminating active from latent tuberculosis in patients presenting to community clinics.

    Get PDF
    BACKGROUND: Because of the high global prevalence of latent TB infection (LTBI), a key challenge in endemic settings is distinguishing patients with active TB from patients with overlapping clinical symptoms without active TB but with co-existing LTBI. Current methods are insufficiently accurate. Plasma proteomic fingerprinting can resolve this difficulty by providing a molecular snapshot defining disease state that can be used to develop point-of-care diagnostics. METHODS: Plasma and clinical data were obtained prospectively from patients attending community TB clinics in Peru and from household contacts. Plasma was subjected to high-throughput proteomic profiling by mass spectrometry. Statistical pattern recognition methods were used to define mass spectral patterns that distinguished patients with active TB from symptomatic controls with or without LTBI. RESULTS: 156 patients with active TB and 110 symptomatic controls (patients with respiratory symptoms without active TB) were investigated. Active TB patients were distinguishable from undifferentiated symptomatic controls with accuracy of 87% (sensitivity 84%, specificity 90%), from symptomatic controls with LTBI (accuracy of 87%, sensitivity 89%, specificity 82%) and from symptomatic controls without LTBI (accuracy 90%, sensitivity 90%, specificity 92%). CONCLUSIONS: We show that active TB can be distinguished accurately from LTBI in symptomatic clinic attenders using a plasma proteomic fingerprint. Translation of biomarkers derived from this study into a robust and affordable point-of-care format will have significant implications for recognition and control of active TB in high prevalence settings

    Prebiotic synthesis of cysteine peptides that catalyze peptide ligation in neutral water

    Get PDF
    Peptide biosynthesis is performed by ribosomes and several other classes of enzymes, but a simple chemical synthesis may have created the first peptides at the origins of life. a-Aminonitriles—prebiotic a–amino acid precursors—are generally produced by Strecker reactions. However, cysteine’s aminothiol is incompatible with nitriles. Consequently, cysteine nitrile is not stable, and cysteine has been proposed to be a product of evolution, not prebiotic chemistry. We now report a high-yielding, prebiotic synthesis of cysteine peptides. Our biomimetic pathway converts serine to cysteine by nitrile-activated dehydroalanine synthesis. We also demonstrate that N-acylcysteines catalyze peptide ligation, directly coupling kinetically stable—but energy-rich—a-amidonitriles to proteinogenic amines. This rare example of selective and efficient organocatalysis in water implicates cysteine as both catalyst and precursor in prebiotic peptide synthesis

    Transcriptome bioinformatic analysis identifies potential therapeutic mechanism of pentylenetetrazole in down syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pentylenetetrazole (PTZ) has recently been found to ameliorate cognitive impairment in rodent models of Down syndrome (DS). The mechanism underlying PTZ's therapeutic effect in DS is however not clear. Microarray profiling has previously reported differential expression, both up- and down-regulation, of genes in DS. Given this, transcriptomic data related to PTZ treatment, if available, could be used to understand the drug's therapeutic mechanism in DS. No such mammalian data however exists. Nevertheless, a <it>Drosophila </it>model inspired by PTZ induced kindling plasticity in rodents has recently been described. Microarray profiling has shown PTZ's downregulatory effect on gene expression in the fly heads.</p> <p>Methods</p> <p>In a comparative transcriptomics approach, I have analyzed the available microarray data in order to identify potential therapeutic mechanism of PTZ in DS. In the analysis, summary data of up- and down-regulated genes reported in human DS studies and of down-regulated genes reported in the <it>Drosophila </it>model has been used.</p> <p>Results</p> <p>I find that transcriptomic correlate of chronic PTZ in <it>Drosophila </it>counteracts that of DS. Genes downregulated by PTZ significantly over-represent genes upregulated in DS and under-represent genes downregulated in DS. Further, the genes which are common in the downregulated and upregulated DS set show enrichment for MAP kinase pathway.</p> <p>Conclusion</p> <p>My analysis suggests that downregulation of MAP kinase pathway may mediate therapeutic effect of PTZ in DS. Existing evidence implicating MAP kinase pathway in DS supports this observation.</p

    MetaboSearch: Tool for Mass-Based Metabolite Identification Using Multiple Databases

    Get PDF
    Searching metabolites against databases according to their masses is often the first step in metabolite identification for a mass spectrometry-based untargeted metabolomics study. Major metabolite databases include Human Metabolome DataBase (HMDB), Madison Metabolomics Consortium Database (MMCD), Metlin, and LIPID MAPS. Since each one of these databases covers only a fraction of the metabolome, integration of the search results from these databases is expected to yield a more comprehensive coverage. However, the manual combination of multiple search results is generally difficult when identification of hundreds of metabolites is desired. We have implemented a web-based software tool that enables simultaneous mass-based search against the four major databases, and the integration of the results. In addition, more complete chemical identifier information for the metabolites is retrieved by cross-referencing multiple databases. The search results are merged based on IUPAC International Chemical Identifier (InChI) keys. Besides a simple list of m/z values, the software can accept the ion annotation information as input for enhanced metabolite identification. The performance of the software is demonstrated on mass spectrometry data acquired in both positive and negative ionization modes. Compared with search results from individual databases, MetaboSearch provides better coverage of the metabolome and more complete chemical identifier information. Availability: The software tool is available at http://omics.georgetown.edu/MetaboSearch.html

    A wideband linear tunable CDTA and its application in field programmable analogue array

    Get PDF
    This document is the Accepted Manuscript version of the following article: Hu, Z., Wang, C., Sun, J. et al. ‘A wideband linear tunable CDTA and its application in field programmable analogue array’, Analog Integrated Circuits and Signal Processing, Vol. 88 (3): 465-483, September 2016. Under embargo. Embargo end date: 6 June 2017. The final publication is available at Springer via https://link.springer.com/article/10.1007%2Fs10470-016-0772-7 © Springer Science+Business Media New York 2016In this paper, a NMOS-based wideband low power and linear tunable transconductance current differencing transconductance amplifier (CDTA) is presented. Based on the NMOS CDTA, a novel simple and easily reconfigurable configurable analogue block (CAB) is designed. Moreover, using the novel CAB, a simple and versatile butterfly-shaped FPAA structure is introduced. The FPAA consists of six identical CABs, and it could realize six order current-mode low pass filter, second order current-mode universal filter, current-mode quadrature oscillator, current-mode multi-phase oscillator and current-mode multiplier for analog signal processing. The Cadence IC Design Tools 5.1.41 post-layout simulation and measurement results are included to confirm the theory.Peer reviewedFinal Accepted Versio

    Do female association preferences predict the likelihood of reproduction?

    Get PDF
    Sexual selection acting on male traits through female mate choice is commonly inferred from female association preferences in dichotomous mate choice experiments. However, there are surprisingly few empirical demonstrations that such association preferences predict the likelihood of females reproducing with a particular male. This information is essential to confirm association preferences as good predictors of mate choice. We used green swordtails (&lt;i&gt;Xiphophorus helleri&lt;/i&gt;) to test whether association preferences predict the likelihood of a female reproducing with a male. Females were tested for a preference for long- or short-sworded males in a standard dichotomous choice experiment and then allowed free access to either their preferred or non-preferred male. If females subsequently failed to produce fry, they were provided a second unfamiliar male with similar sword length to the first male. Females were more likely to reproduce with preferred than non-preferred males, but for those that reproduced, neither the status (preferred/non-preferred) nor the sword length (long/short) of the male had an effect on brood size or relative investment in growth by the female. There was no overall preference based on sword length in this study, but male sword length did affect likelihood of reproduction, with females more likely to reproduce with long- than short-sworded males (independent of preference for such males in earlier choice tests). These results suggest that female association preferences are good indicators of female mate choice but that ornament characteristics of the male are also important

    Clinical and genetic characterisation of dystrophin-deficient muscular dystrophy in a family of Miniature Poodle dogs

    Get PDF
    Four full-sibling intact male Miniature Poodles were evaluated at 4–19 months of age. One was clinically normal and three were affected. All affected dogs were reluctant to exercise and had generalised muscle atrophy, a stiff gait and a markedly elevated serum creatine kinase activity. Two affected dogs also showed poor development, learning difficulties and episodes of abnormal behaviour. In these two dogs, investigations into forebrain structural and metabolic diseases were unremarkable; electromyography demonstrated fibrillation potentials and complex repetitive discharges in the infraspinatus, supraspinatus and epaxial muscles. Histopathological, immunohistochemical and immunoblotting analyses of muscle biopsies were consistent with dystrophin-deficient muscular dystrophy. DNA samples were obtained from all four full-sibling male Poodles, a healthy female littermate and the dam, which was clinically normal. Whole genome sequencing of one affected dog revealed a >5 Mb deletion on the X chromosome, encompassing the entire DMD gene. The exact deletion breakpoints could not be experimentally ascertained, but we confirmed that this region was deleted in all affected males, but not in the unaffected dogs. Quantitative polymerase chain reaction confirmed all three affected males were hemizygous for the mutant X chromosome, while the wildtype chromosome was observed in the unaffected male littermate. The female littermate and the dam were both heterozygous for the mutant chromosome. Forty-four Miniature Poodles from the general population were screened for the mutation and were homozygous for the wildtype chromosome. The finding represents a naturally-occurring mutation causing dystrophin-deficient muscular dystrophy in the dog
    • …
    corecore