Walling, C.A. and Royle, N.J. and Lindstrom, J. and Metcalfe, N.B. (2010) Do female association preferences predict the likelihood of reproduction? Behavioral Ecology And Sociobiology, 64 (4). pp. 541548. ISSN 0340-5443
http://eprints.gla.ac.uk/25362/

Deposited on: 22 February 2010

Do female association preferences predict the likelihood of reproduction?

Craig A Walling ${ }^{* 1}$, Nick J Royle ${ }^{2}$, Jan Lindström \& Neil B Metcalfe

Division of Ecology and Evolutionary Biology, Faculty of Biomedical \& Life
Sciences, University of Glasgow, G12 8QQ.
${ }^{1}$ Current address: Institute of Evolutionary Biology, School of Biological Sciences,
University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, Scotland, UK.
${ }^{2}$ Current address: Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, TR10 9EZ.
*Corresponding author: E-mail craig.walling@ed.ac.uk

Word count:
Abstract 237
Main text 4665
2 figures

Running title: Association preferences and reproduction

Keywords: Reproductive success, female mate choice, sexual selection, differential allocation, Xiphophorus.

Abstract

Sexual selection acting on male traits through female mate choice is commonly inferred from female association preferences in dichotomous mate choice experiments. However, there are surprisingly few empirical demonstrations that such association preferences predict the likelihood of females reproducing with a particular male. This information is essential to confirm association preferences as good predictors of mate choice. We used green swordtails (Xiphophorus helleri) to test whether association preferences predict the likelihood of a female reproducing with a male. Females were tested for a preference for long- or short-sworded males in a standard dichotomous choice experiment and then allowed free access to either their preferred or non-preferred male. If females subsequently failed to produce fry, they were provided a second unfamiliar male with similar sword length to the first male. Females were more likely to reproduce with preferred than non-preferred males, but for those that reproduced, neither the status (preferred/non-preferred) nor the sword length (long/short) of the male had an effect on brood size or relative investment in growth by the female. There was no overall preference based on sword length in this study, but male sword length did affect likelihood of reproduction, with females more likely to reproduce with long- than short-sworded males (independent of preference for such males in earlier choice tests). These results suggest that female association preferences are good indicators of female mate choice, but that ornament characteristics of the male are also important.

Female pre-copulatory mating preferences have been implicated in the evolution of the exaggeration of male traits in a wide range of species (Andersson 1994). This process requires that female mating preferences influence the mating success of males. One of the major problems in demonstrating the importance of female preferences is in separating their effects on male reproductive success from the effects of other processes such as male-male competition (Jennions \& Petrie 1997). This is particularly problematic in natural populations and, as a result, the most accurate way of assessing female mating preferences is the use of experimental setups in laboratory conditions (Rutstein et al. 2007).

There are a number of laboratory based experimental methodologies for assessing female mating preferences (Houde 1997; Shackleton et al. 2005; Rutstein et al. 2007) which vary in their efficacy at removing the effect of male-male competition (Houde 1997). One of the most commonly used is the dichotomous mate choice or two-stimulus design (Shackleton et al. 2005; Rutstein et al. 2007). Here, females are allowed to associate with one of two males usually differing in their expression of a single trait. In order to remove any effects of male-male competition males are usually prevented from interacting with each other through the use of barriers or other methods for restraining males. Often experiments are set up such that the female can interact with both males, but the males are unaware of each other's presence. Female preference is then assessed based on the relative amount of time the female spends associating with the two males. While this protocol removes the effect of male-male competition, it has been criticised for preventing physical interaction, removing cues that females may use under natural conditions (such as chemical and mechanical), reducing the search costs to females to essentially zero and allowing males to be compared side-by-side rather than sequentially (which may be more common in
nature), making it difficult to know whether association preferences represent sexual preferences (Houde 1997; Wagner 1998; Gabor 1999; Shackleton et al. 2005).

Surprisingly, given these criticisms, there are relatively few experiments that test whether or not the males that are preferred by females in such tests are also those that would obtain matings if the sexes were able to mix freely (but see Houde 1988; Kodric-Brown 1989; Clayton 1990; Aspbury \& Basolo 2002; Cummings \& Mollaghan 2006; Lehtonen \& Lindström 2008). One of the reasons for this is the difficulty of allowing males to reproduce with females without reintroducing the effect of male-male competition (Houde 1988; Shackleton et al. 2005). However, if females have some control over mating, it is possible to allow single males of differing status access to females and to compare some measure of mating success between preferred and non-preferred males. Such experiments are described in the literature as no choice tests (Shackleton et al. 2005). Measures of mating success usually involve scoring the time until the first copulation, the number of times a female copulates with a male, or the number of sexual responses from a female (Pilastro et al. 2002; Shackleton et al. 2005). However in species where it is unclear which copulations lead to successful fertilization (e.g. some poeciliid fish), another option is to allow females unrestricted access to males and then monitor their subsequent reproductive output. This set-up allows a test of whether or not female mating preferences, as assessed from association times in dichotomous choice experiments, translate into differences in the reproductive success of a male when allowed free access to females, but in the absence of male-male competition.

It has been demonstrated that females mated with preferred males can allocate more resources into the production of offspring than those mated with non-preferred males (differential allocation) (Burley 1988; Rintamäki et al. 1998; Sheldon 2000).

Females can do this, for example, by adjusting clutch size, egg size, or egg composition (Sheldon 2000). However, the majority of this work has been based on the manipulation of male traits known to be important from other studies, or separate experiments within the same study (Gil et al. 1999; Cunningham and Russell 2000; Kolm 2001; Rutstein et al. 2004; Gorman et al. 2005). Very few studies have allowed females to choose between males and then provided them with the actual male that was preferred or non-preferred (but see Drickamer et al. 2000). Furthermore, the generality of differential allocation remains unclear, since the great majority of studies have been performed on birds (Sheldon 2000). In particular, the occurrence of differential allocation in fish has rarely been tested (Sheldon 2000; but see Kolm 2001).

The green swordtail (Xiphophorus helleri) is a small species of neotropical livebearing fish. Males almost cease body growth after sexual maturation, and instead, invest in the growth of an extension of the caudal fin known as the "sword" that develops during sexual maturation (Basolo 1998a). Females have been shown to associate preferentially with males with larger swords in dichotomous mate choice experiments (Basolo 1990, 1998b), but no experiment has directly tested whether this translates into greater reproductive success for such males (but see Ryan \& Wagner 1987; Cummings \& Mollaghan 2006 for indirect support). We tested the hypothesis that males that were preferred in association tests were also the males that obtained matings with these same females when allowed free access. We also used this data to test the hypothesis that females differentially allocate resources to reproduction with preferred males. Females in this study varied in their preference, with some females preferring long- and some short-sworded males. This allowed an examination of
whether or not male sword length influenced the likelihood of females reproducing with preferred or non-preferred males.

Materials and methods

Experimental animals

Females used in this experiment were second or third generation offspring of wild-caught females from Belize, Central America. Juveniles were reared in small mixed sex groups (2-5 individuals) and checked daily for sexual maturation, defined as the initiation of the development of the gonopodium for males and the development of the gravid spot for females (Walling et al. 2007, 2008). Males were removed from these tanks as soon as development of the gonopodium was detected. Females were mate choice tested 4-6 weeks after the gravid spot was first detected to ensure they were sexually mature. The individuals used in this experiment were derived from a larger study investigating the effect of social environment on rates of maturation and the development of female mating preferences (Walling et al. 2007, 2008). However, this variation in early social environment had no effect on any of the measures analysed in the present study (analyses not shown) and so data were pooled for the analyses presented here. All experiments took place during the period August 2003 to June 2005, with behavioural trials being conducted between 0900 and 1600 h . Fish were maintained on a $12: 12$ hour light:dark cycle at $23^{\circ} \mathrm{C}$ and fed ad lib twice daily with commercial fish pellet (Hikari tropical micro-pellets; Kyorin, Japan). All experiments were conducted under full spectrum lights and all tanks contained gravel
substrate, corner filters and numerous artificial plants. Home tanks contained a mesh cylinder as a refuge for fry and were visually isolated from any males but not females.

Dichotomous mate choice tests

A detailed description of the dichotomous mate choice design is given elsewhere (Walling et al. 2008), so it is only described briefly here. Females were given the choice between two males, size matched for standard length ($\pm 3 \mathrm{~mm}$) but differing in sword length (sword length of long-sworded male, mean \pm SE $=22.05 \pm 0.39 \mathrm{~mm}$; shortsworded male $=7.87 \pm 0.31 \mathrm{~mm}$). Males were presented at the front of the tank, with the two males visually isolated from each other by opaque partitions. The female could interact visually with both males through a transparent partition that was siliconed in place to prevent water flow between compartments and thus the transfer of mechanical and chemical signals. All females were assigned a preference based on the relative amount of time during a 30 minute trial spent associating with each male (i.e. within a 5 cm preference zone in front of the male's compartment). Preference for a particular male was defined simply as spending more time with one male than the other, without considering the magnitude of the difference in time.

Sixty eight females that had been mate choice tested in this way were used in this experiment. There was no population level preference for long-sworded males in this study (time spent with long - time spent with short-sworded male (s); mean \pm SE = $-63.01 \pm 39.36 \mathrm{~s}$, one-sample t -test for significant deviation from the expectation of $0 ; \mathrm{t}$ $=-1.601, \mathrm{df}=67, \mathrm{p}=0.11$) (Walling et al. 2008); 39 females had a preference (as defined above) for the short-sworded male and 29 for the long-sworded male. Of
females that preferred the short-sworded male, 20 were given access (see below) to their preferred male and 19 to their non-preferred male, whereas of the females that preferred the long-sworded male, 15 were given access to their preferred male and 14 to their non-preferred male. Thus approximately half of all females were allowed access to their preferred male (35/68) and half (33/68) to their non-preferred male.

No choice protocol

Pairing took place two weeks after mate choice assessment. Single females were placed into large, visually-isolated mating tanks $(60 \times 30 \times 30 \mathrm{~cm}$ (lwh), filled to a depth of 22 cm) and allowed free access to their allocated male for two weeks. Females were then removed and placed singly in 6 litre home tanks and checked daily for fry. They were given a minimum of 6 weeks (mean for the whole experiment $=9.1$ weeks) after being removed from the mating tank to give birth. Given the published gestation period of 5 weeks for this species (Chong et al. 2004) this was assumed to be enough time for them to produce a brood.

If females did not give birth during this time ($\mathrm{N}=45$ females, 20/45 with preference for long-sworded male, 25/45 with preference for short-sworded male; 22/45 mated to non-preferred male, 23/45 mated to preferred male), they were returned to the mating tanks and paired with a new male of the same phenotype as the first male (i.e. long- or short-sworded). This new male was always previously unfamiliar to the female. Again fish were allowed the opportunity of mating for two weeks before the female was removed to her home tank and left for at least 6 weeks in order to give birth. If females still failed to give birth after this period they were scored as not reproducing for the analysis of the likelihood of reproduction and
removed from all other analyses. Because of time limitations, 7 females that failed to give birth were not given access to a second male and were therefore scored as not reproducing after access to a single male. Exclusion of these females did not influence the results presented below and so all analyses are based on data including these females.

Monitoring female growth

Females were measured on the day of pairing with the first male, and then every four weeks after this for a period of 12 weeks. From 12 weeks onwards, weights and measurements were only taken every eight weeks. Females were also measured the day after giving birth. Measures were taken by first anaesthetising fish (licensed under the UK Home Office Animal Scientific Procedures Act, licence number 60/3625) in an aerated water bath using benzocaine in 95% alcohol at a concentration of $8 \mathrm{ml} / \mathrm{l}$. Once anaesthetised, they were measured (to 0.1 mm) for standard length (sl - from the tip of the mouth to the caudal peduncle), total length (tl - from the tip of the mouth to the end of the caudal fin), and body depth (maximum distance between the dorsal and ventral surfaces), and were weighed (to 0.001 g). Throughout this experiment female size was defined as standard length cubed. This measure was used because mass was greatly influenced by whether or not the female was close to parturition at the time of weighing and there was a strong positive linear relationship between standard length cubed and mass for newly matured females (linear regression, $\mathrm{N}=105$, Adjusted Rsquared $\left.=0.98, \mathrm{~F}_{1,103}=4108, \mathrm{p}<0.001\right)$. Fish recovered from the anaesthetic within seconds and this procedure had no obvious short or long term effects.

Brood measures

Of the 68 females allowed access to a male in this experiment, 36 subsequently reproduced. When fry were found in a home tank, the female was left for one day to ensure the female had finished giving birth. Females were never observed chasing or consuming fry within their home tank. The female was then removed for measuring, and the total number of fry (live and dead) counted. On the same day, live fry were transferred to a small tank to be weighed. Fry were weighed in a small plastic cup (4.5 cm diameter, 8 cm height), which had the base removed and replaced with fine mesh. This cup was wetted, dried with blotting paper, and weighed on an electronic balance. This was repeated five times to give a mean value of the mass of the empty cup. Fry were then transferred to the cup and the procedure for weighing the cup was repeated, again five times (the average variance of the 5 measures $=0.5$ milligrams); the mean mass of the empty cup was then subtracted from that of the cup plus fry, to give the brood mass. This was then divided by the number of fry in the brood to give an estimate of mass of individual fry. Only broods of 5 live fry or larger were weighed in this way as the method was not accurate enough for smaller broods; measurements were therefore only obtained from 25 of the 36 broods that were produced in total. Fry were subsequently placed into six litre tanks in groups of 10 or less. Fry showed no ill effects from the process of being weighed and mortality rates of broods that were weighed were similar to those of unweighed broods (C. A. Walling unpubl. data).

Estimating reproductive investment

There is no evidence that female green swordtails can further invest in offspring following fertilisation of the egg, being lecithotrophic as opposed to matrotrophic (Houde 1997; Kruger et al. 2001). Consequently, measures that reflect the total number of eggs a female allocates to be fertilised by a particular male should be a more accurate representation of female investment in reproduction than measures of the number/size of offspring surviving birth. Given the lack of correlation between the average mass of a fry in a brood and either brood size (Spearman's rank correlation, N $=25$ broods, $\mathrm{r}=0.227, \mathrm{P}=0.3$), or female size (Spearman's rank correlation, $\mathrm{N}=25$, $r=0.307, P=0.14)$ and the strong correlation between brood size and brood mass (Spearman's rank correlation, $\mathrm{N}=25, \mathrm{r}=0.871, \mathrm{P}<0.001$), only the total number of fry in a brood was used as a measure of female investment in reproduction.

As a measure of female investment in future versus current reproduction, we calculated female growth rates between pairing with a male and parturition. Growth rates were calculated by dividing the change in female size (sl^{3} at parturition - sl^{3} at mating) by the number of days between pairing and parturition. Growth was calculated as a linear change with time as there was no evidence of an asymptotic relationship (regression of growth rate on natural log transformed time: R -squared = $0.02857, \mathrm{~F}_{1,34}=2.029, \mathrm{P}=0.16$.

Data analysis

This experiment generated three measures of female investment in reproduction: 1. whether or not a female gave birth (likelihood of reproduction), 2 . the number of fry in a brood (brood size) and 3. female growth rate between mating and giving birth (growth). Each of these three measures of female investment was independently
related to the factors; mate's status (whether or not a female was mated to a preferred or non-preferred male), mate's sword type (whether a female was allocated a long- or short-sworded male), male number (the number (1 or 2) of males a female had been given access to before she reproduced), female age (days) and female size (sl ${ }^{3}$). We also included brood size in the analysis of female growth to test for a negative relationship between the number of fry produced and the amount females grew. To determine the significance of the factors in each of the 3 models, we constructed a maximal model (containing the above factors and their two-way interactions) and then compared models following sequential removal of the least significant terms (starting with the highest order terms) until we reached a minimal model containing only significant factors or interactions (Crawley 2005). Models were compared using ANOVA (F tests) or penalised log likelihood scores (AIC) (Crawley 2005). Minimal models were checked by adding all terms and their interactions back in, one by one, and examining model AIC scores for possible improvement in model fit.

Data on whether or not females gave birth were analysed using a generalised linear model (GLM) with binomial error structure. Data on brood sizes and female growth were analysed using standard linear models. All data were assessed for normality and homogeneity of variance and treated accordingly. Analyses were performed in either R release 2.7.2 (R Development Core Team 2008) or SPSS 15.0 for windows.

Results

Likelihood of reproduction

Following model simplification, the only factors to remain in the model were mate's status (preferred or non-preferred) and mate's sword type (long or short). Females were more likely to reproduce when paired with a preferred than a non-preferred male (GLM with binomial error structure, $\mathrm{Z}_{65}=2.49, \mathrm{P}=0.01$ (Fig. 1)) and when paired with a long- than a short-sworded male (GLM with binomial error structure, $\mathrm{Z}_{65}=$ $2.31, \mathrm{P}=0.02$ (Fig. 1)). Illustrating this another way, there was a significant interaction between a female's preference (i.e. for a long- or a short-sworded male) and her likelihood of reproducing when given access to a preferred or non-preferred male (GLM with binomial error structure, $\mathrm{Z}_{64}=-2.31, \mathrm{P}=0.02$). Females that preferred long-sworded males were more likely to reproduce with preferred males (Fig. 1 column 1 compared to Fig. 1 column 4) whereas females that preferred shortsworded males were equally likely to reproduce with preferred and non-preferred males (Fig. 1 column 2 compared to Fig. 1 column 3).

Brood size

None of the factors measured in this study or their interactions had a significant effect on the size of the brood females produced. Model simplification resulted in the removal of all terms from the model.

Growth

The minimal model of female growth contained the factor male number. Females' growth rate between pairing and parturition was slower when reproducing after access to 2 males than when reproducing after access to 1 male $\left(\mathrm{GLM}, \mathrm{t}_{34}=-2.41, \mathrm{P}=0.02\right.$,

Fig. 2). This significant effect of male number on growth rate was still significant when including female size in the model to control for the possibility that females mated to 2 males may be larger and therefore grow at a different rate than females mated to a single male (GLM, effect of male number: $\mathrm{t}_{33}=-2.22, \mathrm{P}=0.03$, effect of female size: $\mathrm{t}_{33}=0.064, \mathrm{p}=0.9$).

Discussion

The results of this experiment demonstrate that female association preferences from dichotomous choice experiments predict the likelihood of a female reproducing with a male in the green swordtail. When given unrestricted access to a male, females were more likely to reproduce if they had previously spent more time associating with that male (or another male with similar sword length) in a dichotomous mate choice experiment. However, the likelihood of reproduction was also influenced by the sword length of the male to which a female was allowed access. Females were more likely to reproduce when allowed access to a long- rather than a short-sworded male, suggesting long-sworded males are either better able to solicit matings from females or are more fertile. There was no strong evidence for differential allocation by females: the number of fry produced by a female was not related to any measure of female preference or any other factors measured in this study. A female's subsequent growth rate after having mated appeared to vary depending on the number of males she had access to prior to reproducing. Females that reproduced after access to two males had a slower growth rate than those that reproduced after access to one male.

Despite the importance placed on female mating preferences in the evolution of the exaggeration of male secondary sexual traits (Andersson 1994; Kokko et al.
2003) and the number of studies using association preferences to infer female mating preferences (e.g. Basolo 1990; Hill 1994; Blount et al. 2003; Fernandez \& Morris 2008), this study is one of very few to test the relationship between association preferences and actual reproduction. Even in the guppy (Poecilia reticulata), one of the best studied systems in sexual selection, such studies are infrequent and either include the effect of male-male competition (Bischoff et al. 1985) or use female sexual responses to male displays rather than just association time as a measure of female preference (Houde 1988; Pitcher et al. 2003). In general, experiments addressing the link between female mating preferences based on association times and male mating success tend either to confound the effect of mating preference and malemale competition when assessing male mating success (Bischoff et al. 1985; Clayton 1990; Lehtonen \& Lindström 2008) or to produce unclear results (Gabor 1999; Aspbury \& Basolo 2002; Rutstein et al. 2007).

Within the Xiphophorus genus particularly, confirmation of the relationship between female association preferences and male mating success is indirect. In Xiphophorus nigrensis, association preferences match the greater mating success of larger males in nature (Ryan \& Wagner 1987; Ryan et al. 1990) and there is a correlation between association time and female gliding behaviour, which occurred prior to putative copulation events (contact between the male gonopodium and the female gonopore) in open access trials (Cummings \& Mollaghan 2006). The results presented here therefore represent the first direct test of the correlation between female association preferences and the likelihood of reproduction in the Xiphophorus genus. The lack of significant effect of the number of males a female had access to on the likelihood of reproducing indicates that female preferences were generalised: if a long-sworded male was preferred in the mate choice test and females did not
reproduce after access to the first male, they were more likely to reproduce if subsequent males were of that same, preferred sword-length.

Although our results generally support the use of association preferences as a proxy for mating preferences, they also suggest that other factors may be important; for instance, the sword length of the male a female was mated with also had a significant effect on the likelihood of reproduction. Females that were paired with long-sworded males were more likely to reproduce than females that were given short-sworded males. Put another way, females were only more likely to reproduce with a preferred male if their preference was for long- rather than short-sworded males.

One possible explanation is that long-sworded males may be better able to fertilize females than short-sworded males. This could be the result of differences between long- and short-sworded males in fertility (sperm and ejaculate quality and/or quantity) or the ability to coerce females into mating (female poeciliids are not in complete control of mating (Houde 1997; Bisazza et al. 2001)). Although controlling for male size should help to control for variation in sperm and ejaculate quantity, it is possible that males with longer swords are in better condition and thus produce ejaculates of better quality (for example sperm with less damage). For example, in guppies, it has been demonstrated that more colourful males sire more offspring than duller males when equal amounts of sperm from both were artificially inseminated into females (Evans et al. 2003). This suggests that males with greater expression of a sexually selected trait may produce more successful ejaculates, and this may interfere with female mate preferences if females prefer males with lower expression of sexually selected traits (this study; Wong \& Rosenthal 2006).

Natural variation in sword length was used to produce the long- and shortsworded males used in this study. Given that swords are grown throughout a males sexually mature life (Basolo 1990), it is therefore likely that long-sworded males were also older than short-sworded males. Age differences between long- and shortsworded males would explain our results if older males were either better able to solicit matings from females or produce more successful ejaculates. A relationship between age, degree of sexual signal and testes size has been shown in the sedge warbler (Acrocephalus schoenobaenus) (Birkhead et al. 1997), suggesting that older males may produce larger and therefore more successful ejaculates. Artificial manipulation of sword lengths would allow future studies to control for the effects of male age, and close observation of pairs in mating tanks may allow quantification of differences in males' ability to coerce a female into mating.

A limitation of the results presented here is that although females were initially given a visual choice between two males, they were only given access to solitary males and therefore were not given a choice at the time of actual mating. In wild populations, although it has been suggested that simultaneous choice may be uncommon (Wagner 1998), females may mate with multiple males (Luo et al. 2005). Recent studies have shown that females can bias fertilisations towards males with preferred phenotypes in some systems (Pizzari \& Birkhead 2000; Evans et al. 2003; Lewis \& Austad 2004). However, in this experiment although preferred males were more likely to gain reproductive success, there was still an effect of the sword length of the male (a sexually selected trait (Basolo 1990; Rosenthal \& Evans 1998)) on likelihood of reproduction. It will therefore be interesting to investigate in this and other study systems the relative influence of female preference and male sexually
selected trait expression on the reproductive success of males when females have access to multiple males as may be more common in natural situations.

Finally, our measures of female investment in reproduction suggest that females do not differentially allocate resources to offspring production depending on their perception of the attractiveness of a male. Neither brood size nor female growth rate depended on whether or not a female was mated to a preferred or non-preferred male, with brood size unrelated to any factors measures in this study and growth rate dependent only on the number of males a female had access to before she reproduced. This may indicate that females are investing more in reproduction (as opposed to growth) having rejected (or for some reason not reproduced with) one male than when they reproduce with the first male they are given access to. It may also indicate that females that failed to reproduce with the first male were in worse condition than those that did reproduce with the first male and thus grow slower between mating and parturition. However, the current data do not allow us to distinguish between these hypotheses.

In conclusion, the results of this experiment support the use of female association preferences as a proxy for female mating preferences. Such support is generally rare and particularly so in the Xiphophorus genus of livebearing fish, a common system for research into sexual selection. However, the sword-length of the mate was also important, independent of preference, in predicting the likelihood of reproduction. Further research is required to fully understand why this is the case and to attempt to disentangle the effects of changes in female preferences from differences between long- and short-sworded males in their ability to fertilize females.

Acknowledgements We would like to thank two anonymous referees for perceptive comments on the manuscript and J. Laurie and G. Adam for help with animal husbandry. CAW was funded by a Natural Environment Research Council (NERC) studentship.

References

Andersson M (1994) Sexual Selection. Princeton University Press, New Jersey Aspbury AS, Basolo AL (2002) Repeatable female preferences, mating order and mating success in the poeciliid fish, Heterandria formosa. Behav Ecol Sociobiol 51:238-244

Basolo AL (1990) Female preference for male sword length in the green swordtail, Xiphophorus helleri (Pisces, Poeciliidae). Anim Behav 40:332-338

Basolo AL (1998a) Shift in investment between sexually-selected traits: tarnishing of the silver spoon. Anim Behav 55:665-671

Basolo AL (1998b) Evolutionary change in a receiver bias: a comparison of female preference functions. Proc R Soc Lond B 265:2223-2228

Bischoff RJ, Gould JL, Rubenstein DI (1985) Tail size and female choice in the guppy (Poecilia reticulata). Behav Ecol Sociobiol 17:253-255

Bisazza A, Vaccari G, Pilastro A (2001) Female mate choice in a mating system dominated by male sexual coercion. Behav Ecol 12:59-64

Birkhead TR, Buchanan KL, Devoogd TL, Pellatt EJ, Székely T, Catchpole CK (1997) Song, sperm quality and testes asymmetry in the sedge warbler. Anim Behav 53:965-971

Blount JD, Metcalfe NB, Birkhead TR, Surai PF (2003) Carotenoid modulation of Immune function and sexual attractiveness in zebra finches. Science 300:125-127

Burley N (1988) The differential allocation hypothesis: an experimental test. Am Nat 132:611-628

Chong ASC, Ishak SD, Osman Z, Hashim R (2004) Effect of dietary protein level on the reproductive performance of female swordtails Xiphophorus helleri (Poeciliidae). Aquaculture 234:381-392

Clayton NS (1990) Assortative mating in zebra finch subspecies, Taeniopygia guttata guttata and T. g. castanotis. Phil Trans R Soc Lond B 330:351-370

Crawley MJ (2005) Statistics, An Introduction using R. Wiley, Chichester Cummings M, Mollaghan D (2006) Repeatability and consistency of female preference behaviours in a northern swordtail, Xiphophorus nigrensis. Anim Behav 72:217-224

Cunningham EJA, Russell AF (2000) Egg investment is influenced by male attractiveness in the mallard. Nature 404:74-77.

Drickamer LC, Gowaty PA, Holmes CM (2000) Free female mate choice in house mice affects reproductive success and offspring viability and performance. Anim Behav 59:371-378

Evans JP, Zane L, Francescato S, Pilastro A (2003) Directional postcopulatory sexual selection revealed by artificial insemination. Nature 421:360-363

Gabor C (1999) Association patterns of sailfin mollies (Poecilia latipinna): alternative hypotheses. Behav Ecol Sociobiol 46:333-340

Gil D, Graves J, Hazon N, Wells A (1999) Male attractiveness and differential testosterone investment in zebra finch eggs. Science 286:126-128

Gorman HE, Arnold KE, Nager RG (2005) Incubation effort in relation to male attractiveness in zebra finches Taeniopygia guttata. J Avian Biol 36:413-420

Hill GE (1994) Geographic variation in male ornamentation and female mate preference in the house finch: a comparative test of models of sexual selection. Behav Ecol 5:64-73

Houde AE (1988) The effect of female choice and male-male competition on the mating success of male guppies. Anim Behav 36:888-896

Houde AE (1997) Sex, Color, and Mate Choice in Guppies. Princeton University Press, New Jersey

Jennions MD, Petrie M (1997) Variation in mate choice and mating preferences: A review of causes and consequences. Biol Rev 72:283-287 Kodric-Brown A (1989) Dietary carotenoids and male mating success in the guppy: an environmental component to female choice. Behav Ecol Sociobiol 25:393-401 Kokko H, Brooks R, Jennions MD, Morley J (2003) The evolution of mate choice and mating biases. Proc R Soc Lond B 270:653-664

Kolm N (2001) Females produce larger eggs for large males in a paternal mouthbrooding fish. Proc R Soc Lond B 268:2229-2234

Kruger DP, Britz PJ, Sales J (2001) The influence of livefeed supplementation on growth and reproductive performance of swordtail (Xiphophorus helleri Heckel 1848) broodstock. Aq Sci Cons 3:265-273

Lehtonen TK, Lindström K (2008) Repeatability of mating preferences in the sand goby. Anim Behav 75:55-61

Lewis SM, Austad SN (1994) Sexual selection in four beetles: the relationship between sperm precedence and male olfactory attractiveness. Behav Ecol 5:219-224 Luo J, Sanetra,M, Schartl M, Meyer A (2005) Strong reproductive skew among males in the multiply mated swordtail Xiphophorus multilineatus (Teleostei). Heredity 96:346-355.

Pilastro A, Evans JP, Sartorelli S, Bisazza A (2002) Male phenotype predicts insemination success in guppies. Proc R Soc Lond B 269:1325-1330

Pitcher TE, Neff BD, Rodd FH, Rowe L (2002) Multiple mating and sequential mate choice in guppies: females trade up. Proc R Soc Lond B 270:1623-1629

Pizzari T, Birkhead TR (2000) Female feral fowl eject sperm of subdominant males. Nature 405:787-789

R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org

Rintamäki PT, Lundberg A, Alatalo RV, Höglund J (1998) Assortative mating and female clutch investment in black grouse. Anim Behav 56:1399-1403

Rosenthal GG, Evans CS (1998) Female preference for swords in Xiphophorus helleri reflects a bias for large apparent size. Proc Nat Acad Sci, USA 95:4431-4436

Rutstein AN, Gilbert L, Slater PJB, Graves JA (2004) Mate attractiveness and primary resource allocation in the zebra finch. Anim Behav 68:1087-1094

Rutstein AN, Brazill-Boast J, Griffith SC (2007) Evaluating mate choice in the zebra finch. Anim Behav 74:1277-1284

Ryan MJ, Wagner WE Jr (1987) Asymmetries in mating preferences between species: Female swordtails prefer heterospecific males. Science 236:595-597

Ryan MJ, Hews DK, Wagner WE Jr (1990) Sexual selection on alleles that determine body size in the swordtail Xiphophorus nigrensis. Behav Ecol Sociobiol 26:231-237 Shackleton MA, Jennions MD, Hunt J (2005) Fighting success and attractiveness as predictors of male mating success in the black field cricket, Teleogryllus commodus: the effectiveness of no-choice tests. Behav Ecol Sociobiol 58:1-8

Sheldon BC (2000) Differential allocation: tests, mechanisms and implications. TREE 15:397-402

Wagner WE Jr (1998) Measuring female mating preferences. Anim Behav 55:10291042

Walling CA, Royle NJ, Metcalfe NB, Lindström J (2007) Green swordtails alter their age at maturation in response to the population level of male ornamentation. Biol Let 3:144-146

Walling CA, Royle NJ, Lindström J, Metcalfe NB (2008) Experience induced preference for short-sworded males in the green swordtail (Xiphophorus helleri). Anim Behav 76:271-276

Wong BB, Rosenthal GG (2006) Female disdain for swords in a swordtail fish. Am Nat 167:136-140

Fig 1 The effect of the male's status and sword length on the proportion of females that gave birth (the total number of females in each group are given in the associated bars). Females were more likely to give birth after access to a preferred male than a non-preferred male and after access to a long- (clear bars) than a short-sworded (dark bars) male.

Fig 2 The effect of the number of males a female had been given access to before reproducing on her growth rate between pairing and parturition. Females grew slower between pairing and parturition when reproducing after access to 2 males than after access to 1 male (sample sizes are given in the associated bars).

Fig 1

Fig 2

