25,325 research outputs found

    Cosmic Ray Physics with ACORDE at LHC

    Get PDF
    The use of large underground high-energy physics experiments, for comic ray studies, have been used, in the past, at CERN, in order to measure, precisely, the inclusive cosmic ray flux in the energy range from 2x10^10 - 2x10^12 eV. ACORDE, ALICE Cosmic Rays DEtector, will act as Level 0 cosmic ray trigger and, together with other ALICE apparatus, will provide precise information on cosmic rays with primary energies around 10^15 - 10^17 eV. This paper reviews the main detector features, the present status, commissioning and integration with other apparatus. Finally, we discuss the ACORDE-ALICE cosmic ray physics program.Comment: Contribution to the 2007 Europhysics Conference on High Energy Physics - Manchester, England 19-25 July 2007; 3 pages, 3 figure

    High–Speed Data Transmission Subsystem of the SEOSAR/PAZ Satellite

    Get PDF
    This paper analyzes a digital interface and bus system modeling and optimization of the SEOSAR/PAZ Earth Observation satellite. The important part of the satellite is an X–band Synthetic Aperture Radar instrument that integrates 384 Transmit/Receive Modules located in 12 antenna panels 7.5 m away from the central processor and controlled by a synchronous 10 Mbps bidirectional serial protocol. This type of mid–range point–to–multipoint transmission is affected by bit errors due to crosstalk, transmission line attenuation and impedance mismatches. The high–speed data communication network has been designed to optimize the transmission by using a simulation model of the data distribution system which takes into account the worst–case scenario and by developing a lab–scaled prototype which exhibits BER of 10-11 for an interfering signal of 10 Vpp. The result is a point–to–multipoint bidirectional transmission network optimized in both directions with optimal values of loads and equalization resistors. This high–speed data transmission subsystem provides a compact design through a simple solution

    On the convergence of cluster expansions for polymer gases

    Full text link
    We compare the different convergence criteria available for cluster expansions of polymer gases subjected to hard-core exclusions, with emphasis on polymers defined as finite subsets of a countable set (e.g. contour expansions and more generally high- and low-temperature expansions). In order of increasing strength, these criteria are: (i) Dobrushin criterion, obtained by a simple inductive argument; (ii) Gruber-Kunz criterion obtained through the use of Kirkwood-Salzburg equations, and (iii) a criterion obtained by two of us via a direct combinatorial handling of the terms of the expansion. We show that for subset polymers our sharper criterion can be proven both by a suitable adaptation of Dobrushin inductive argument and by an alternative --in fact, more elementary-- handling of the Kirkwood-Salzburg equations. In addition we show that for general abstract polymers this alternative treatment leads to the same convergence region as the inductive Dobrushin argument and, furthermore, to a systematic way to improve bounds on correlations

    Algal culture studies related to a Closed Ecological Life Support System (CELSS)

    Get PDF
    In many respects, algae would be the ideal plant component for a biologically based controlled life support system, since they are eminently suited to the closely coupled functions of atmosphere regeneration and food production. Scenedesmus obliquus and Spirulina platensis were grown in three continuous culture apparatuses. Culture vessels their operation and relative merits are described. Both light and nitrogen utilization efficiency are examined. Long term culture issues are detailed and a discussion of a plasmid search in Spirulina is included

    Bound - states for truncated Coulomb potentials

    Full text link
    The pseudoperturbative shifted - ll expansion technique PSLET is generalized for states with arbitrary number of nodal zeros. Bound- states energy eigenvalues for two truncated coulombic potentials are calculated using PSLET. In contrast with shifted large-N expansion technique, PSLET results compare excellently with those from direct numerical integration.Comment: TEX file, 22 pages. To appear in J. Phys. A: Math. & Ge

    Direct evidence of a zigzag spin chain structure in the honeycomb lattice: A neutron and x-ray diffraction investigation on single crystal Na2IrO3\rm Na_2IrO_3

    Full text link
    We have combined single crystal neutron and x-ray diffractions to investigate the magnetic and crystal structures of the honeycomb lattice Na2IrO3\rm Na_2IrO_3. The system orders magnetically below 18.1(2)18.1(2) K with Ir4+^{4+} ions forming zigzag spin chains within the layered honeycomb network with ordered moment of 0.22(1)ÎĽB\rm 0.22(1) \mu_B/Ir site. Such a configuration sharply contrasts the N{\'{e}}el or stripe states proposed in the Kitaev-Heisenberg model. The structure refinement reveals that the Ir atoms form nearly ideal 2D honeycomb lattice while the IrO6\rm IrO_6 octahedra experience a trigonal distortion that is critical to the ground state. The results of this study provide much-needed experimental insights into the magnetic and crystal structure crucial to the understanding of the exotic magnetic order and possible topological characteristics in the 5dd-electron based honeycomb lattice.Comment: Revised version as that to appear in PR

    Modeling skull-face anatomical/morphological correspondence for craniofacial superimposition-based identification

    Get PDF
    Craniofacial superimposition (CFS) is a forensic identification technique which studies the anatomical and morphological correspondence between a skull and a face. It involves the process of overlaying a variable number of facial images with the skull. This technique has great potential since nowadays the wide majority of the people have photographs where their faces are clearly visible. In addition, the skull is a bone that hardly degrades under the effect of fire, humidity, temperature changes, etc. Three consecutive stages for the CFS process have been distinguished: the acquisition and processing of the materials; the skull-face overlay; and the decision making. This final stage consists of determining the degree of support for a match based on the previous overlays. The final decision is guided by different criteria depending on the anatomical relations between the skull and the face. In previous approaches, we proposed a framework for automating this stage at different levels taking into consideration all the information and uncertainty sources involved. In this study, we model new anatomical skull-face regions and we tackle the last level of the hierarchical decision support system. For the first time, we present a complete system which provides a final degree of craniofacial correspondence. Furthermore, we validate our system as an automatic identification tool analyzing its capabilities in closed (known information or a potential list of those involved) and open lists (little or no idea at first who may be involved) and comparing its performance with the manual results achieved by experts, obtaining a remarkable performance. The proposed system has been demonstrated to be valid for sortlisting a given data set of initial candidates (in 62,5% of the cases the positive one is ranked in the first position) and to serve as an exclusion method (97,4% and 96% of true negatives in training and test, respectively)

    Desarrollo de la hidrologĂ­a en tiempo real en Mendoza y la Argentina

    Get PDF
    En la presente comunicaciĂłn se expone el desarrollo de la hidrologĂ­a en nuestro paĂ­s.Academia Nacional de AgronomĂ­a y Veterinari
    • …
    corecore