
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 

https://ntrs.nasa.gov/search.jsp?R=19850008161 2020-03-20T20:29:40+00:00Z



rt

AJ

f

f

NASA CONrRACTOR REPORT 177322

+-CI?-177J22)	 ALGAL CUL'IU6t STUDIES 	 Nft-1(470
TED TC A CLLSLL ECOLOGICAL LIFE SUfFURT
.h (.,FLS^) fhdrtin CdLiettd Labs.,
'.SOLe, Ma.)	 49 b SC AJ3/AF A01 GSCL 06C	 Uncl.ir

Cii54 1J249

Algal Culture Studies Related to a
Closed Ecoloqical Life Support System (CELSS)

R. Radiner
P. Behrens
E. 1' er: ► andez
O. 011inger
C. Howell
A. Venables
D. Huggins
R. Gladue

•

,`	 O

,l	 O

2

CONTRACT NAS2-10969
October 1981

•	 CELSs

NASA

w

.40

t

,Raw	
—NOW



NASA CON T RACTOR REPORT 177322

1 `Y'

Algal Culture Studies Related to a
Closed Ecological Life Support System (CELSS)

R . Radme r
P. Behrens
E. Fernandez
0. 011inger
C . Howe 11
A. Venables
D. Huggins
R. Gladue
Martin Marietta Laboratories
Baltimore, Maryland 21117-3898

Prepared for
Ames Research Center
Under Contract No. NAS2-10969

RMA
National Aerunautics and
Space Administration

Ames Research Center
Muffett f veld Cahtorn a 94035

t

CEL55



TABLE OF CONTENTS

I. INTRODUCTION ....................................................	 3

II. DESCRIPTION OF CULTURE APPARATUSES ........................I..... 4

III. LIGHT UTILIZATION EFFICIENCY 	 11

IV. NITROGEN UTILIZATION EFFICIENCY •	 19

V. LONG—TERM CULTURE ............................................... 	 21

VI. SEARCH FOR PLASMIDS IN SPIRULINA ................................ 	 29

APPENDIX A.	 METHODS ..................................................	 36

APPENDIX B. ALGAL CULTURE STUDIES RELATED TO A	 — —	 —

SUPPORT SYSTEM ....................

2

h

a
6



I. INTRODUCTION

In many respects, algae would be ideal plant components for a

biologically-based closed life support system, since they are eminently suited

to the closely coupled functions of food production and atmosphere

regeneration. This idea was clearly recognized by an earlier generation of

scientists (see, e.g., 8ioregenerative Systems, NASA SP-165, 1968). A similar

program is being carried out in the USSR (Gitel'son, I., et al., Problems of

Space Biology, Vol. 28, Experimental Ecological Systems Including Man, NASA 	 j

Technical Translation F-16993, 1975).

Work carried out during the course of our CELSS project was devoted to

several aspects of the (steady-state) continuous culture of algae. Our

efforts have been primarily devoted to the culture of Scenedesmus obliouus, a

physiologically well-characterized green alga with good growth

characteristics, and Spirulina _ platensis, a nutritionally well-characterized

blue-green alga with less favorable growth characteristics.* Because of the

differences in culturability of these two organisms, we have been using

Scenedesmus as a model and control for the culture of the (possibly) more

valuable Spirulina. In the following sections, we describe the results

obtained in our CELSS-related studies. A formal description of some of this

work has been prepared (see Appendix II).

We have also successfully maintained several other organisms of interest in
continuous culture, namely:
1. Chlorella vuul arms, an alga closely related to Scenedesmus, but which

does no display rapid light-driven 0 2 reduction, and t us may dissipate
NO 3 - as N20.

2. Chlorella sorokiniana, an alga studied earlier under NASA auspices by
R. Krauss ewe—TFiis alga has a very high growth rate, but is reported
to volatilize large amounts of NO3-.

3. An_a^c_^sst_iss nidulans, the only efficiently transformable alga currently
ava- ilable.__^ enetic transformation, i.e., molecular gene transfer,
provides an efficient means to incorporate desirable traits into an
organism.)

3
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II. DESCRIPTION OF CULTURE APPARATUSES

The three systems currently used to maintain continuous cultures of algae	 l`

are shown in Figs. 1-3. All of these systems operate as turbidostats. Thus, 	 'I
in order for these systems to function properly, the algal culture must be

homogeneous, so that a constant beam of light reaches the light detector. The

three systems differ in geometry as well as in various other parameters. The

characteristics of each apparatus with respect to light, gas dispersion,

contamination, volume, density, temperature, and filament aggregation are

shown in Table I.

Each of these systems has its advantages. The reaction vessel seems to

be the most effective system for growing cultures of Spirulina platensis (see

below). The large airlift is by far the best apparatus for measuring light
I

efficiency.

Because of its unusual and distinct morphology, Spirulina has proven more

difficult to culture than algae that are unicellular or form very small

colonies. Spirulina , tends to clump during culture; the antidote, rapid

stirring and high gas feed, results in foaming. The design and construction

of the culture system shown in Fig. 3 was a direct response to problems

encountered during our Spirulina culture experiments. We have found that the

most effective means of maintaining homogeneous cultures with this organism is

a combination of adequate agitation and a NaCl concentration of > 2 g/L. (The

most widely used medium contains a concentration of 1 g/L NaCl, which allows

aggregation to occur.) We should note that the tendency of Spirulina to clump

is not without its advantages; this alga can be readily harvested from a

culture by merely lowering the ionic strength by dilution.

Our earlier studies used the culture system shown in Fig. 4a (exploded)

and Fig. 4b (assembled). As is evident from Fig. 4a, the system is of modular

construction for easy maintenance and repair. Components in contact with the

algae are made of machinable polycarbonate plastic or Viton, both of which can 	
1	

;

be sterilized by autoclaving or by rinsing with ethanol. According to the	 y	 a	 I

results of tests using Scenedesmus and Chlorella, neither material caused

toxic or other undesirable effects (e.g., cell adhesion). These results

4
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Table I

Culture Maintenance Characteristics of
the Three Continuous- Culture Apparatuses

Large Airlift Small	 Airlift Reaction Vessel
(Fig.	 1) (Fig.	 2) (Fig.	 3)

s

Light Easily Difficult to Difficult	 to
measurable measure measure

Gases and Good dispersion Good dispersion Poor dispersion
Frit Clogging but some clogging but clogging No clogging

on CO2 may occur on CO2 occurs

Filament Some clumping Continual

'i
Minimal	 i

Aggregation

Contamination None None Cannot be
Autoclaved due
to detector

Volume = 11 with	 stir bar : 400 ml 2	 liters	 ^t
895 ml	 with

modification

Effective Algae other than < Large airlift < Small	 airlift

Cell	 Density Spirulina	 can	 be
grown very densely

9

rn



10

agreed with earlier findings. However, during the course of our studies with

this system, we encountered problems with maintaining sterility (when desired)

and structural integrity. We therefore began using the glass systems

described above.



III. LIGHT UTILIZATION EFFICIENCY

CHARACTERISTICS OF CULTURED SCENEDESIIUS CELLS

Figure 5 illustrates the-linear relationship between the dry v+eight of

'	 the cultured cells (mg/r„1), their cell number (cells/ml), and their

chlorophyll content ( 9 chl/ml) obtained when the cell culture, system of

Fig. 1 was operated at varying cell densities. These data indicate that the

relationships between cell mass, cell population, and chlorophyll/cell are

constant over the range of culture conditions tested. Thus, the cells do not

appear to be ;hanging or adapting to differences in growth rate or light

intensity during these experiments (see, e.g., Myers, Proceedings of the

IBP/PP Technical Meeting, Trebon, 1970). The slopes of the two lines

(computed by standard statistical techniques) are 2.8 x 10 7 cells/mg dry wt

and 48.3 g chl/mg dry wt, respectively. This corresponds to 1.73 x 10"
6
 9

chl and 3.6 x 10" 5 g dry cell mass per cell.

PRODUCTIVITY AND LIGHT EFFICIENCY

Figure 6 illustrates the relationships between culture productivity

(lower panel) and light utilization efficiency (upper panel) vs dry weight

observed in a series of experiments in which Scenedesmus was maintained in the

continuous culture system shown in Fig. 1. (See also Table II.) The

productivity vs dry weight curve rises linearly until the cell density reaches

a level at which light becomes limiting ( 1.4 mg ml -1 or	 48 g chl ml"1).

At this point,	 89% of the photosynthetically active radiation (PAR) is being

absorbed. In the initial linear portion of the curve, productivity is limited

by cell growth at the given light intensity. The slope of this initial

portion reflects the maximum dilution rate of the system (dimensions of ml

hr -1 ). In the present instance, this rate is 65 ml hr -1 , which corresponds to

a doubling time of 13.8 hr. This fairly low growth rate (about half the

maximum growth rate generally observed at this temperature) reflects the

rather low intensity of the light source ( 10% of full sunlight at the inner

wall of the algal culture chamber). These low incident intensities are a main

11
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contributing factor to the high light-utilization efficiencies obtained in

this system, since the cells are never driven into light saturation (see

below).

The slope of the line drawn through zero and any point on the

productivity curve corresponds to the dilution rate, and therefore the

doubling time and growth rate, at this point. The productivity curve rises to

a value of	 58 mg hr' 1 at	 3 mg ml -1 , which is	 80% of the maximum

theoretical productivity ( 20% on an energy basis; see, e.g., Radmer, R. and

B. Kok, in Encyclopedia of Plant Physiology, Vol. 5, New Series, pp. 125-135,

A. Trebst and M. Avron, eds., Springer-Verlag, Berlin, 1977). One would

predict that the productivity would gradually decrease at very high cell

densities, since increasing amounts of biomass (with finite and significant

maintenance energy) would be supported by a constant amount of absorbed

incident light ( 97% absorption at 2.5 mg ml -1 ). However, it is not

practical to obtain such data in the present system.

The upper panel of the figure shows the efficiencies* of absorbed and

incident light as a function of cell density (dry 'weight). The efficiency

with respect to absorbed light (solid line) appears to be a steadily-

decreasing (linear ?) function of cell mass, reflecting 1) lack of light

saturation due to the low incident intensity (see above), and 2) the

significant maintenance energy required by the (increasing) biomass. If we

assume the reality of the linear relationship, the maximum efficiency of

absorbed light in this system is 19%. The slope of the line, 1.28% (mg/ml)-1,

reflects losses due to maintenance energy, which is probably linear over the

rather narrow conditions tested. Since 100% efficiency corresponds to 0.0064

W hr mg -1 , the maintenance energy is 8.19 x 10 -5 W hr mg -1 , and one would

predict that the culture would reach light compensation at a dry wt of

14.3 mg ml-1

*These light efficiency measurements contain the following primary sources of
error: 1) a small volume at the bottom of the culture ( 10% of the total
volume) that is not significantly illuminated; 2) the overflow cell density
is only 89% of the reactor density; 3) the light measurements represent the
average of a somewhat asymmetrical cylindrical light field; and 4) room
light was not excluded (< 3% of total incident light). All these errors are
relatively small, and the more significant ones tend to cancel.

15



The efficiency with respect to incident light (dotted line) reflects the

balance between light absorption and utilization (the initial ascending phase)

and losses due to the cellular metabolism (descending phase). In the present

system, the maximum light utilization efficiency occurs at 1.7 to 2.0 mg ml-1

dry wt. The descending phase becomes identical to the "ansorbeo light" curve

at high cell densities.

RELATIONSHIP OF LIGHT INTENSITY TO
TURNOVER OF THE PHOTOSYNTHETIC APPARATUS

One of the primary limitations of most photosynthetic organisms is that

they do not perform well in strong light (e.g., full sunlight). The photo-	 N`

synthetic apparatus operates somewhat like a lens; approximately 200 "light-

harvesting" chlorophyll molecules transfer light energy to a reaction center, 	 I

with a corresponding increase in the effective light intensity per center.

Consequently, efficiency can be very high in weak light, but drops off rapidly

at intensities approaching that of bright sunlight, due to the rather slow 	 ;1

(ms) turnover of the dark reactions (see, e.g., R. Radmer and 6. Kok, op.

cit.).	
BI

Figure 7 is an idealized cross sectional diagram of our algal culture

system. The light flux values (in units of photosynthetically-active quanta	 M

c,n-2 S -1 ) were measured in the absence of algae. Note that they closely follow

a 1/r relationship, suggesting that the total flux is conserved (except for

losses due to reflection and absorption by the glass walls) during its passage

through the concentric cylinders.

A rough estimate of the light flux per reaction center can be made as

follows. Our data indicate that Scenedesmus has a specific absorption

coefficient of — 0.6 1 cm -1 9 -1 over the spectral range of 400-700 nm

(specific data not shown), and a chlorophyll content of 4.8% (Fig. 2; see also

J. Myers, in Encyclopedia of Chemical Technology, pp. 33-51, R. Kirk and 0.

Othmer, eds., Interscience, NY, 1957). Note that 0.6 1 cm-1 g -1 correspt,•ds

to (0.6)(1000 cm 3 ) cm -1 g-1 or 600 cm2 g -1 . Thus, the equivalent specific

absorption is 1.2 x 10 4 cm  (g chlorophyll)
-1

, which is about 10^ of the

extinction coefficient observed at the absorption maxima. Since one g

16
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chlorophyll = 6 x 10 20 molecules, the molecular cross section (- extinction

coefficient) is 0.2 x 10 -16 cm2 (chlorophyll molecule)-1.

The maximum quantum flux that the algae are subjected to is 1.4 x 10 16 by

cm2 s -1 or 0.28 b y molecule" 1 s -1 . Since each reaction center is connected to

200 chlorophyll molecules (see above), the maximum quantum flux will result

in the transfer of - 60 by s-1 to each reaction center.

This value is well below the generally accepted maximum reaction center

turnover rate of -• 100 s -1 (Radmer and Kok, op. cit.). Thus the photo-

synthetic dark reactions are able to keep pace with the light flux, the system

does not become light saturated, and high light efficiencies can be obtained.

•f
1

)
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IV. NITROGEN UTILIZATION EFFICIENCY

Krauss et al. [Prot. 21st Plenary Meeting, Committee on Space Research

(COSPAR), 1978] reported that a significant fraction of the NO 3 - nitrogen

provided to Chlorella cultured in a "recyclostat" was lost, probably as N20.

The release of this gas into the atmosphere of a closed system could cause

grave problems for the air regeneration system, as well as contribute to a

lack of closure of the nitrogen cycle.

3ecause of these earlier results, one of our goals was to determine the

nitrogen balance of Scenedesmus cultures, and specifically, whether compounds

such as N20 were excreted into the medium. Our initial approach was to deter-

mine the nitrogen levels of the nutrient medium, cell-free efflux, and

harvested algae.

The results of these experiments (Table III) show surprisingly good

agreement between added and recovered N (average 100.5% recovery) and suggest

that the nitrogen entering the culture (as NO 3 - ) was either incorporated in

the algae or appeared as NO 3 - in the efflux supernatant. We have had no

indication to date that the nitrogen is lost by the system. Although these

results do not prove that there is no nitrogen loss, they do suggest that any

loss must be small (e.g., < 1%), at least for NO3-.

Because our data obtained with Scenedesmus point to a very low production

of nitrogenous by-products, we have not attempted to determine N20 directly.

(Current data indicate that the N 20 concentration in the gas stream would be

too low to monitor directly.) We have observed only traces of NO 2 - (< 1 ppm)

in the effluent supernatant.

19
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Sample

1

2

3

4

TABLE	 III.

Nitrogen Utilization	 Efficiency of Scenedesmus

Nitrogen	 (mg/1) Recovery

Medium Supernatant Algae W

339 216 127 101.2

293 120 171 99.3

290 123 171 101.4

290 122 168 100.0
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V. LONG-TERM CULTURE

We maintained continuous Scenedesmus cultures in the apparatus shown in

Figs. 4a and 4b for about 4 months before voluntary shutdown. The cultures

were monitored daily for packed cell volume (PCV), chlorophyll, dry weight,

reproduction rate, and pH, and intermittently for glycolate, total N, and

microbial contamination. Representative data from these long-term experiments

is shown in Fig. 8. Note that the culture system displays good long-term

stability. The complete data record for these experiments is given in Tables

N and V.

We addressed the interrelated topics of algal by-product excretion and

microbial contamination by periodically assaying the culture supernatant. To

date, we have detected no significant glycolate (< 1 ppm of this primary algal

excretory product), or excreted carbon (< 25 ppm) while our cultures were in

the steady state. Parallel microbial assays in some cases indicated a low

(0.1 - 0.010) non-algal biomass that did not change appreciably (with time)

with respect to amount or species composition (see also Tables IV and V).

These findings suggest that microbial contamination should not be a

significant problem in such cultures because 1) the algae seem to excrete

little or no organic compounds; and 2) microbial populations, even when

present, do not take over the culture.

4
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TABLE IV.

Date

(1981)

Data Obtained

pH	 PC4

(Ul/ml)

During Continuous Culture of Scenedesmus

Dry	 Call
Chi.	 Reproduction	 Baight	 Counts

(number
(US/ml )	 (ml/br)	 (mg/ml)	 calla/ml)

with Urea

Contam-
ination

(number
bact/ml)

Densit7
Reference
and Other

Notes

Aug 20 6.25 9.0 88 52.4 2.4 1.965

21 6.25 9.0 90 54.8

24 6.25 8.5 88 2.28 8.0x107

25 6.15 9.0 84 55.8 2.38

26 6.15 8.5 85 58.2 2.32

27 5.9 8.0 79 59.4 2.32

28 6.0 8.0 88 55.4 2.4

31 5.9 8.0 80 2.16 8.0x107

Sep	 1 5.9 8.0 84 57.5 2.21

2 5.95 9.5 120 50.0 2.63

3 5.95 9.0 109 57.5 2.43 9.5x107

4 5.9 10.0 112 49.4 2.76

8 6.0 9.5 111 2.54 2.92x106 I.
9 6.0 10 115 2.72

10 6.8 9.5 49.1 2.55 8.95x107 I
11 6.0 10 120 2.85 i{	 '
14 6.1 10 109 2.64 2.25x106

15 6.1 10 109 46.5 2.57

16 6.0 10 102 2.55

17 5.95 13.5 133 2.98

18 6.0 11.0 123 49.4 2.79

21 5.5 12.0 107 2.69 7.26x107 2.6x106

22 5.7 11.0 107 40.0 2.92

23 5.7 10 104

24 5.55 11.0 104 50.7 2.72

25 5.65 10.0 104 46.5 2.86

28 5.65 8.5 112 2.48 8.65x107

29 5.4 8.5 98 50 2.46

30 5.3 8.5 99 51.9
r
i	 I

23
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Table IV. (Continued)

Dansit7
DcT call Contam- Reference

4 Date pH PCV Chl. Reproduction Weight Counts inacion and Other
Noce$

(number (number
(1981) (µl/al) (US/Ml) (al/hr) (mg/ml) cells/ml) bact/ml)

j

i Oct	 1 5. 4 9.0 103 51.9

2 5.7 8.0 104

5 5.5 7.5 96 2.28

6 5.45 7.5 104 50 2.15 1.2x106

7 5.3 7.5 96 52.5 2.29 6.75x107 2.110

8 5.4 8.0 118 53.8 2.36

9 5.25 8.0 110 47.9 2.21

12 5.8 8.5 118 2.23

tY 13 5.7 8.0 104 52.2 2.23

14 5.7 8.0 115 50.0 2.23

_ 15 5.8 8.5 117 45.6 2.21

16 2.30

19 5.7 8.0 109 2.28

20 5.5 8.5 115 42.5 2.27

` 21 5.6 9.5 117 39.4 2.20

22 5.8 9.5 124 45.0 2.30

23 5.7 9.0 115 46.9

26 5.75 8.0 110 1.40

27 5.7 8.0 101 47.2 2.15

28 5.5 7.5 110 48.8 2.25

29 5.2 7.5 103 48.8 2.15

30 5.3 7.5 112 48.1 2.24 6.09x107

Nov	 2 5.6 8.0 117 2.13 8.47x105

3 5.65 8.0 112 48.1 2.22

4 5.75 7.5 115 50.0 2.14

5 5.8 2.17

6 8.0 109 2.23 7.3x105

9 5.8 12.5 190 3.05

10 5.85 7.0 107 46.9 2.02

11 6.0 7.5 109 41.2 2.05

12 5.85 7.0 104 46.5 2.07

13 5.75 8.0 107 45.2 2.16 2.47:c105

w I , 24
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Table Iv. (Continued)

Data
•

(1981)

pN PC7

(ul/ml)

Chl.

(WT/ml)

Reproduction

(ml/hr)

Dry
Height

(mg/ml)

Call
Counts

(number
ce113/m1)

Contaw-
imation

(number
bact/ml)

Damit7
Reference
and Other

Notes

Nov 16 6.1 7.0 107 2.01

17 6.0 7.0 107 46.7 1.98

18 5.8 7.0 109 50.3 2.05

19 5.7 7.5 112 48.5 2.14

20 2.05 7.9x107

23

24 5.7 7.5 116 43.8 2.21

25 5.7 7.5 112 44.4 2.12

30 5.5 7.0 112 2.11 1.85x106

Dec	 1 5.4 7.0 110 45.5 2.09 7.78x107

2 5.5 7.0 104 48.1 2.00

3 5.4 7.0 110 42.5 2.01

4 5.4 6.0 96 45.3 1.92

7 5.6 6.5 96 1.92

8 •5.6 7.0 107 43 2.01 2.53x106

9 5.6 7.0 113 37.5 2.09

10 6.0 6.5 96 43.9 1.93 2.06x106

14 5.8 6.5 100 1.85

15 5.9 6.5 104 50 1.85

16 5.8 6.5 104 44.2 1.83

17 5.7 6.0 98 46.9

21 6.1 6.5 96



TABLE V

Data Obtained During Continuous Culture of Scenedesmus with NO3

Deosit7
Dry Call Contam- Refereoce

Data pH PM Chl. Reproduction- Weight Counts ination and Other
Notes

(number (number
(1981) (41/ml) (y1;/ml) (m1/hr) (mg/ml) cello/ml) bact/ml)

Aug 20 7.7 8.0 57 58.9 1.93 2.14

21 7.75 7.0 62 67.9

24 7.7 7.0 54 1.35 4.15x107

25 7.65 7.0 56 62.4 1.78

26 7.7 7.0 57 61.8 1.74

27 7.7 7.0 59 58.7 1.57 KNO3 in-
creased to

20 aH

28 7.7 6.0 61 65.8 1.44

31 7.6 5.0 52 1.2 2.3x107

Sep	 1 7.5 5.0 49 71.9 1.23

2 7.7 8.0 91 58.1 1.81

3 7.8 9.0 109 51.3 2.02 3.35x107

4 7.65 7.0 79 61.3 1.69

8 7.7 6.5 86 1.66 4.05x106

9 7.65 7.0 86 1.66

10 7.5 6.5 55.4 1.61 3.49x107

11. 7.8 6.0 107 1.70 2.32

14 7.8 6.0 90 3.71 3.53x106

15 7.75 ;.d 91 56.1 1.77

16 7.7 7.0 85 1.69

17 7.8 7.0 91 1.64

18 7.75 7.0 86 48.2 1.8

21 7.6, 7.0 94 1.83 4.73x107 5.26x106

22 7.8 7.0 94 53.1 1.77

23 7.65 7.0 87 2.48

24 7.65 7.0 96 53.3 1.77

25 7.7 7.0 94 55.3 1.84

28 7.0 7.0 101 1.74 4.67x107

29 7.4 6.0 89 61.9 1.72

30 7.3 6.0 83 61.3

26
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Table V.	 (Continued)

Density
Dry Cell Contam- Reference

'	 Date pB PCV Chl. Reproduction Weight Counts ination and nther
Notes

(number (number
(1981) (µl/ml) (ug/ml) W./hr) (mg/ml) cells/ml) bast/ml)

^p

I!

Oct	 1 7.4 6.0 83 59.4 6.65x106

2 7.4 6.0 78

5 7.3 6.0 78 1.52 FI'

6 7.2 6.0 78 54.4 1.50 6.67x106 u

7 7.0 6.5 78 60.6 1.52 3.8x107 2.600

8 7.3 6.0 78 56.3 1.54

9 6.4 6.0 78 60.0 1.42

12 5.5 4.5 43 1.20 la

13 5.5 4.0 43 52.2 1.14

14 5.25 3.5 35 51.3

CLEANED AND RESTARTED +	 SAME CONDITIONS

23 7.4 7.0 92 45.1 2.70

26 7.5 7•.5 104 2.13

27 7.3 8.0 112 47.9 2.13

28 7.3 8.0 117 47.5 2.15 8.25x107

29 7.0 8.0 103 48.8 1.99 S

30 6.6 7.5 110 48.8 1.91 6.25x107 2.73x106

i;

Nov	 2 6.2 7.5 110 1.90

3 6.3 8.0 107 48.8 1.96

4 6.4 9.0 117 47.5 1.99

5 1.90

6 7.8 9.0 105 1.89 4.2x106

9 6.6 9.0 110 1.98

10 6.4 9.0 96 43.1 1.85

11 6.6 8.0 130 40.6 1.86

12 6.45 8.0 101 49.0 1.74

13 6.7 8.0 99 49.0 1.87 6.33x106

16 6.55 8.0 106 1.86 11
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Table V. (Continued)

Date

(1981)

PH PCV

(ul/ml)

Chi.

(yg/ml)

Reproduction

(ml/hr)

Dry
Weight

(mg/ml)

0011
Counts

(number
cells/ml)

Contam-
ination

(number
bats/ml)

Density
2aference
and Other

Notes

Nov 17 6.7 8.0 115 46.7 1.88

18 6.7 8.0 112 47.9 1.96

19 6.5 8.0 96 50.9 1.82

20 1.85 5.52x107

23 6.4 8.0 114 1.84

24 6.4 8.0 116 50.0 1.95

25 6.3 8.0 120 46.9 1.93

30 6.4 8.0 115 1.94 2.17x106

Dec	 1 6.3 8.0 113 47.3 1.85 5.62x107

2 6.3 7.0 114 48.8 1.84

3 6.2 8.0 104 49.4 1.84

4 6.1 7.5 98 48.5 1.75

7 6.0 7.0 100 1.75

8 6.2 7.5 107 45.5 1.77 5.51x106

9 6.3 7.5 113 43.5 1.81

10 6.0 6.5 98 49.0 1.75 1.01x107

14 5.7 7.0 98 1.77

15 6.2 7.0 100 46.3 1.74

16 6.3 7.0 107 44.8 1.76

17 5.6 6.5 98 46.3 1.76

21 6.3 7.5 99 49.5

i

i
a

I

i+	 I
is	 I

i{

28

an



VI. SEARCH FOR PLASMIDS IN SPIRULINA

Although it is a good source of protein, Spirulina platensis is deficient

in the amino acids lysine and methionine. The intent of this project was to

locate a plasmid in Spirulina which could be used as a vector to clone genes

for amino acids, thus making Spirulina a more valuable food source. Plasmids

have been isolated from other filamentous blue-green algae such as Anabaena

variabilis, Nostoc strain MAC, and Plectonema boranum (Lambert and Carr, 1982,

Arch. Microbiol. 133, 122-125).

GENERAL PLASMID PREPARATION

Axenic cultures of Spirulina platensis were obtained by the methods

described in Appendix A.

The general approach for the preparation of plasmids is to 1) break open

the cells, 2) remove cellular debris and chromosomal DNA, and 3) isolate the

extrachromosomal plasmid DNA, which can then be visualized on an agarose

gel. Below is a flow chart outlining the steps of the Spirulina plasmid

preparation described by Lambert and Carr.

Procedure
	

Purpose

100 mlSpirulina cells
grown in o GU2 in air

Incubate with 5 mg/ml lysozyme
	

Cell lysis (breaks cell wall)
i

Incubate with 2% SUS
	

Completes cell lysis
(bursting)
i

NaCl precipitation and
	

Precipitates cell walls,
centrifugation for 30 min
	

organelles and most of chromosomal

Extraction with phenol
Extraction with chloroform/
	

Removal of proteins
isoamyl alchol

Volume reduction with sec-butanol
	

Concentrate DNA

Ammonium acetate and
	

Precipitate DNA
Ethanol precipitation

Dry and resuspend DNA in buffer
	

Visualize DNA
Run on gel
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Samples of DNA were run on horizontal agarose gels using Tris-borate

buffer and a voltage gradient of 3 . 5 V/cm. When the DNA reached the opposite

edge of the gel (visualized by an added dye), the entire gel was stained with

ethidium bromide (a substance which intercollates into double stranded nuclaic

acids and fluoresces under ultraviolet light) and photographed.

Figure 9 shows a gel of a sample of DNA from the plasmid preparation

described above (lane 2). The gel showed a smear of chromosomal DNA and some

RNA (the large smear at the bottom of the gel), but no plasmid bands. (On a

gel, a plasmid will appear as a bright band, often against a background of

chromosomal DNA which is usually a smear running the length of the gel.) In

this gel, there are plasmids from a different alga in lanes 8 and 9,

approximately 2.5 cm from the top of the gel.

TREATMENT WITH RESTRICTION ENZYMES

Often, in order to visualize a plasmid on a gel, it is necessary to

digest a sample of the DNA preparation with a restriction enzyme. These

enzymes cut the DNA strands, forming many fragments which migrate to different

regions of the gel according to their size. Restriction enzymes cut both

plasmid and chromosomal DNA, but since a plasmid is small, it will only be cut

in a few places, thus forming several bright bands against a background of

chromosomal DNA fragments (laddering effect). (It is important to digest

chromosomal DNA, because a chromosomal smear could mask a plasmid band.)

We attempted to digest the DNA from the Lambert and Carr preparation with

the restriction enzyme Xho I after incubation with RNase and proteinase.

(Both RNA and some proteins will inhibit the action of the restriction

enzymes.) However, the digestion of the DNA was unsuccessful; i.e., there was

no laddering. Most likely, the restriction enzyme was inhibited by something

in the preparation - e.g., proteins, algal pigments, or polysaccharides.

^r
1

1

i
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ORIGINAL. PAGE iS
OF POOR QUALITY

1 2 34 5 6 7 89 10 1112

Figure 9. Electrophoretic separation of a piasmid preparation

(0.7' agarose gel, run at 50V for 2 hr).	 Spirulina DNA

is in lane 2. Lanes 3 through 11 contain DNS frorT

different strains of Anacystis, a glue-green alga. Note

the piasmid bands in lanes 8 and 9.	 Lane 1 and 12 contain
^, DNA fragments of known sizes to serve as molecular weight

markers.
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SARKOSYL TREATMENT

The preparation of Lambert and Carr produced less DNA than expected from

the amount of cells used, probably due to incomplete lysis. Spirulina has a

tough polysaccharide sheatli surrounding the cell walls which may not be

sensitive to the lysozyme-SDS treatment. Preliminary tests showed that a 30-

minute incubation with Sarkosyl (an anionic detergent) resulted in significant

cell wall disintegration. When the cells were incubated with Sarkosyl prior

to treatment with lysozyme and SDS, DNA recovery was increased at least

twofold, which indicated that the Sarkosyl improved cell lysis.

Figure 10 shows the results of a large scale ( 4 -2) plasmid preparation

(derived from Lambert and Carr) after treatment with RNase, proteinase, and

solvent extractions to clean the DNA. Prior to running the gel, the DNA was

incubated with BAM HI, another general restriction enzyme. The gel showed

some DNA, but no chromosomal digestion or plasmid bands. Two more sets of

solvent extractions removed most of the protein, but digestion by restriction

enzymes was. still inhibited (data not shown). Extended dialysis (up to 3

days) with large pore size dialysis tubing markedly improved the purity of the

DNA (as determined by A260/A280) but did not noticeably increase restriction

enzyme digestion.

CASSE PROCEDURE

Because of the difficulties encountered with the procedure of Lambert and

Carr, we tested the procedure of Casse et al. (J. Gen. Micro. 113, 229-242,

1979), which is especially designed to isolate large plasmids often removed

with the chromosomal DNA. This preparation does not rely on centrifugations

of DNA at high speeds, as most procedures do; instead, the DNA is cleaned with

a series of salt-saturated solvent extractions.

Figure 11 shows the gel obtained with samples of Spirulina DNA prepared

according to the Casse procedure. Again, we observed no plasmid bands.

Although no DNA was present, there was a significant amount of RNA, indicating

that the cells were lysed. It is unlikely that the DNA was damaged, since

this procedure is reported to be very gentle.

32
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ORIGINAL PAC jy
OF POOR QUALITY

? 3	 4	 6

Figure 10. Electrophoretic separation of a plasmid separation	 ,^
(0.7' agarose gel, run at 50V, 2 1z hr) .	 Sp'ruI i na DNA
from a modified Lambert and Carr preparation that	 I

included treatment with Sarkosyl to aid in cell lysis.
DNA in lane 2 has been incubated with Bam HI, and in

lane 4 with 00 I. Untreated DNA is in lane 3. Lane 6

shows '^ DNA markers.
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<—pUH 25 open circle
PUH 25 suoercoile,'

-- pUH 24 - "r^r•,^o^F

E—pUH 24 Doe r. Circ!E
r, L' ?C ..:Derr.-iIF'	 1

ORIGINAL PAGE +5
OF POOR QUALITY

1	 2	 3	 4 5	 6	 7

Figure 11,	 Electrophoretic separation of a plasmid preparation

(0.7a agarose, 50V, 2% hr). Lanes 4 and 5 contain
Spirul ina DNA from the Casse preparation. There is no
chromosomal DNA, but the presence of RNA proves that

the cells were lysed. Lanes 6 and 7 show Anacystis
chromosomal DNA and plasmids isolated by the—masse
procedure. The plasmids are identified by arrows.

Lane 3 contains a DNA marker.
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As a positive control, the same Casse procedure was used on a 2-R culture

of Anacystis nidulans R2, a unicellular blue-green alga known to contain two

plasmids, pUH24 and pUH25. As shown in Fig. 7, this preparation was very

successful in isolating Anacystis plasmid DNA; large amounts of different

forms of both plasmids were observed.

CONCLUSION

We performed six different plasmid preparations on our strain of

Spirulina platensis over a three-month period. (This effort das not initiated

in vacuo; we have extensive experience in isolating plasmids from other blue-

green algae.) The fact that we have been unable to detect plasmids in

Spirulina, while at the same time routinely isolating them from other blue-

green algae, leads us to conclude that our Spirulina strain does not contain

any significant extrachromosomal material.

Our strain of Spirulina platensis has been "in captivity" for a long

time, and since it is not under any environmental pressure to maintain
i+

plasmids, it may have lost them. If deemed appropriate, we could screen 	 ^.

Spirulina strains recently isolated from nature for endogenous plasmids.

Genetic transformations do not require the use of endogenous plasmids, but are
;i

often made easier by their presence. Further work along these lines will

await feedback from NASA.

i

i
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APPENDIX A: METHODS

OPERATION OF GLASS CULTURE SYSTEMS (FIGS. 1-3)

These continuous culture systems are based on the earlier work of several

other groups, notably Myers and Clark (J. Gen. Physiol. 28, 103-112, 1944);

also, Kuhl and Lorenzen (in Methods in Cell Physiology, Vol. I, 0. Prescott,

ed., pp. 159-187, Academic Press, NY, 1964); and Ammann and Lynch, (Appl.

Microbiol. 13, 546-551, 1965). A primary goal of the design and construction

j	 of our culture systems was to provide a means to control and monitor important
6

G	 physiological parameters, such as light flux, light absorption, temperature,

f
and growth rate. Another important consideration was our goal of constructing

I	 a system that was harvestable on demand. This latter requirement precluded

the use of a chemostat system; instead, we use the turbidostat system

described below.

Figure 1 is a diagram of the culture apparatus that has been most

frequently used in our laboratory. The culture system is made of transparent

glass and consists of three concentric, cylindrical chambers.

The innermost chamber houses the illuminating source (a standard 40-watt,

cool white, high-output, fluorescent bulb). The middle chamber, with a volume

of 890 ml and a width of 1.0 cm, contains the algal culture. Temperature

control is provided by a refrigerated bath (Neslab RTE-4; t 0.01°C temperature

control from -30°C to +100°C) which circulates water through the outermost

chamber.

Cell density is maintained by monitoring the light transmission through

the culture using a photoconductive cell (Clairex CL604L). The output of this

photocell is amplified, integrated (to remove the ac component from the

light), and digitized. This value is then compared to a preset digital

reference. When the processed photocell output exceeds that of the reference

for 4 s, a peristaltic pump is turned on for a preselected period of time

allowing for the addition of medium to the culture. A corresponding volume of

suspension is displaced from the algal chamber via the overflow tube. After a

latent time of 40 s to allow for mixing of any newly added medium, the

r

r

.
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monitoring cycle is reinitiated. Turbidity is monitored and controlled by a

microcomputer (SYM-1, Synertek Corporation) and ancillary electronics built in

house. With this microcomputer system, eight culture systems can be

controlled sinioltaneously.

Either air or CO 2 -enriched air is admitted through the fritted bottom of

the culture module at a flow rate of about 800 cm 3/min; this flow rate is

sufficient to provide relatively rapid mixing and prevent cell settling.

The culture systems shown in Figs. 2 and 3 use identical control systems

to that of Fig. 1. The three systems differ primarily in their yeometry.

The culture systems used earlier, shown in Figs. 4 and 5, employed an
^^	 y

analog system constructed in-house to control the cell density. In this

system, the output of the photocell is amplified, integrated (to remove the ac

component from the light), and compared to a reference voltage. When the

processed photocell output differs sufficiently from that of the reference for	 r

several seconds (we generally used 4 s), a modified Teflon solenoid valve

(Valcor 51056T34-I0) is triggered to admit a preselected amount of nutrient 	
l

(about 6 ml) to the culture. After a latent time (40 s) to allow for mixing,

the monitoring cycle is reinitiated.;

Measurements of Cell Characteristics 	 ( ^I

k	 G^
Chlorophyll was determined by adding an aliquot of algal culture to a 1:1	 1'

mixture of Triton X-100 and 5% KOH in McOH, heating at 63°C for 3 min, and 	 (	 "

centrifuging. Optical density was measured at 645 nm. Packed cell volume

(PCV) was determined by centrifuging (clinical centrifuge, high speed) 1 ml of

algal culture in a modified hemotocrit vessel. Cell density was determined

using a Coulter Counter Model TAII with PCAII accessory. Dry weight

determinations involved filtering a 10-m1 aliquot of algal culture through

glass fiber filter (approximate retention 2.6 um), rinsing thoroughly with

distilled water, and drying at 110°C. (The filter paper was dried overnight

at 110°C prior to weighing; dried samples were cooled to room temperature in a

dessicator before weighing.) The growth rate of the culture was determined by	 i
I

`i
i
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measuring the volume that overflowed during a defined time period (usually

16-24 hr). The productivity (mg/hr) of an algal culture is defined as the

product of the dry weight (mg/ml) of the culture and the overlow rate (ml/hr).

Light Measurements

Light intensity was measured with an ISCO Model SR spectroradiometer

between 400-700 nm in increments of 25 nm; these data were integrated to yield

light intensity in units of uW/cm2 . Measurements were made at eight points

around the culture apparatus, and the values averaged to correct for any lack

of symmetry. Light efficiency was calculated using the absorbed light

intensity (cal/hr) and the biomass productivity, converted from mg/hr to

cal/hr, assuming a conversion of 5.5 cal/mg. 	 (See, e.g., R.L. Miller and C.H.

Ward, in Atmosphere in Space Cabins and Closed Environments, pp. 186-222, K.

Kammermeyer, ed., Appleton-Century-Crofts, New York, 1966).

Carbon and Nitrogen Analyses

A 10-m1 volume of algal culture was centrifuged at 10,000 RPM for 10 min,

and an aliquot of the supernatant acidified with 0.05 ml concentrated H2SO4/ml

supernatant. Glycolic acid was determined by heating (100°C for 20 min) the

acidified supernatant in a 4-fold greater volume of 0.01% 2,7-

dihydroxynaphthalenediol in concentrated H 2SO4 (Calkins, Anal. Chem. 15:762,

1943). Absorbance was measured at 530 nm with a Cary 15 spectrophotometer.

Total excreted carbon was determined by measuring the chemical oxygen demand

of the supernatant (Oceanographic International Corporation's Standard Ampule

C.O.D. method). The nitrate concentration of the supernatant and growth media

were determined on a Dionex Model 16 ion chromatograph. Nitrogen analysis of

the freeze-dried algal pellet was done by an outside laboratory (Galbraith

Laboratories, Knoxville, TN).
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Preparation of Axenic Cultures of Spirulina platensis

S. platensis is a difficult organism to purify since bacteria can reside

within the polysaccharide sheath as well as in the surrounding medium.

Several attempts were made to purify Spirulina using standard methods before

we found one that ;,as successful.

The method that produced axenic Spirulina platensis was adapted from T.

Ogawa and G. Terui (J. Ferment. Technol., Vol. 48, No. 6, pp.. 361-367,

1970). Our procedure was as follows:

1. Filter a 10-14 day old culture through an ethanol-sterilized
Whatman #540 filter (pore size 8 m) housed in a Millipore
filter assembly.

2. Transfer algae into 30 ml sterile media and resuspend.

3. Repeat Step 1.

4. Transfer algae into > 150 ml sterile media and resuspend.

5. Homogenize algae filaments for 40 r in an ethanol-sterilized
homogenizer assembly.

6. Repoat filtration as In Step I.

7. Transfer and resuspend as in Step 2.

8. Filter as in Step 1.

9. Transfer and resuspend in 80 ml sterile media.

10. Expose to ultraviolet radiation (8-W bulb) for 7 min at a
distance of 38 cm. Agitate culture during irradiation. After
irradiation, cover and store in the dark for 3 h (to avoid
photoreactivation of bacteria).

11. Dilute so that one drop contains one fragment of the algae.
Inoculate 98 test tubes con;,aining 5 ml media with one drop of
the suspension and incubate in the light.

We found that Spirulina grew iii 8 tubes, 4 of which were bacteria free.
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ALGAL i1LTURE STUDIES RELATED TO A
CLOSEL ECOLOGICAL LIFE SUPPORT SYSTEM

R. Radmer, P. Behrens, E. Fernandez,
0. 011inger, and C. Howell

4artin Marietta Laboratories
1 450 South Rolling Road

3altimore, 4aryland	 21227

long-term cultures of Scenedesmus nbiiauus
were raintained in an annular ii—art co umn
operated as a tnroidostat. We observed a linear
relationship between -he dry weight of the cultured
cells, their cell number, and their chlorophyll
content aver a aroaa range of cell density it
constant Illumination. Thus, the cells did not
appear to oe adapting to ai'ferences in growth rate
^r light intensity during these experiments.
Productivity vs ary wt rose linearly until the cell
density reached a level at which light oacame
limiting; at tnis point - 39% of the photo-
synthetically active radiation (PAR) was being
absoroed. The maximum dilution rate of the system
corresponded to a doubling time of 13.3 hr, about
halfthe -naximum growtn rate generally observed at
this temperature. Productivity at tha .maximum was
80% of the maximum theoretical productivity. The

rather lbw incident intensities (- 10% of full
sunlight) were a main contributing factor to the
high l i ght utilization efficiencies obtained in
this system, since the cells were never driven into
light saturation.

In many respects, algae would be ideal plant
components for a biolagically-based closed life
supportsystem, since they are eminently suited to
the close)y coupled functions of food production
and atmosphere regeneration. • In this comnunica-
tion, we report some findings an the (steady-state)
continuous culture of Scenedesmus obliauus, a
physiologically welt-characterized green alga with
good growth characteristics.

METHODS

Description of Culture Apparatus

Long-tern, ultures were maintained in annular
air-lift columns operated as turoidostats. These

Ni idea was cleerly recognized by an

earlier generation of scientists (see, e.g.,
Bioregenerative Systems, NASA SP-165, 1968).
A similar program is being carried out in the
USSR (Gitel'son, I., at al., Problems of Space
Biology, Vol. 28, Experimental Ecological
Systems Including Man, NASA Technical Transla-
tion F-16993, 19751,
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continuous culture systems Are based on the earlier

work of several other groups, notably Myers aid
Clark (J. Gen. Physiol. 28, 103-112, 1944); also,
Ruhl and Lorenzen (in Metnods in Cell Physiology,
Vol, I, 0. Prescott, ad., pp. 159-187, Academic
Press, NY, 1964); and Amlann and Lynch, (Appl.
Microbial. 13, 546-bbl, 1960). A primary goal of
the design and construction of our culture systems
was to provide a means to control and monitor
important physiological parameters, such as tight
flux, light adsorption, temperature, and Irowcn
rate. Another Important consideration was our goal
of constructing a system that was n • rvestable on
demand. This latter requirement precluded the use
of a chemostat system; instead, we dse :he tur-
biu0stat system described below.

- l gure i is a diagram of the :0 turn apparatus
constructed and ISed i n our laooratdry. The vul-
ture system is 'pa pa )f transparent )lass ina :on-
sists of throe concentric, cylindrical :namoers.

Figure 1.

The Innermost chamber houses the illuminating
source (a standard 40-watt, cool white, nign-
output, fluorescent bulb). The middle chamber,
with a volume of 89U ml and a width of 1.0 cm,
contains the algal culture. Temperature control
is provided by a refrigerated bath (Neslao RTE-4;
+ O.U1°C temperature control from -30°C to +10000)
which circulates water through the outermost
chamber.
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Cell density is maintained by monitoring the
light transmission through the culture using a
photoconductive cell (Clalrex CL6040 . The output
of this photocell is amplified, integrated (to
remove the ac component from the light), and dig-
itized. This value is then compared to a preset
digital reference. When the processed photocell
output exceeds that of the reference for 4 s, a
peristaltic pump is turned on for a preselected
period of time allowing for the addition of medium
to the culture. A corresponding volume of suspen-
sion is displaced from the algal chamber via the
overflow tube. After a latent time of 40 3 to
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allow for mixing of any newly added medium, the
monitoring cycle is reinitiated. Turbidity is
monitored and controlled by a microcomputer (SYM-i,
Synertex Corporation) and ancillary electronics
built in house. With this microcomputer system,
eight alture systems can be controlled simultane-
ously.

Either air or 0 2-enriched air 1s am.,i "od
through the fritted bottom of the culture module at
a flow rate of aoout NO cm /min; this flow rate is

sufficient to provide relatively rapid mixing and
prevent cell settling.

Measurements of Cali Characteristics

Chloro phyll was determined by adding in
ali quot of algal culture to a 1:1 nixture of Tritun
X-100 and 5% <OH 4 n McOH, heating it 63 0r, for 3
m nuces, and centrifuging. Optical density was
measured at 645 nm. Packed dell volume (PCV) was
determined oy centrifuging (clinical centrtfv-o,
hign s peed) i TO of algal :ulture In a moal'lea
hemotocrit vessel. Cell density was tetarmine<J
rising a Coulter Counter Model TAIL with PCAII
accessory. Ory weight determinations involved
filtering a 10-ml aliquot of algal culture through
glass fiber filter ;app roximate retention 2.6 ym),
rinsing chorougnly with ..stilled Hater, ana orying
at 110 0;.	 The filter Paper was dried overnignt is
110 0C prior co wei)ning; dried samples were conled
to room temperature in a dessicator before wetgn-
ing.) The growth rate of the culture was deter-
nined byneasuring the volume ttat overflowed
during a defined time pen oa (usually 16-24 nr).
The productivity (mg/hr) of an algal culture is
defined is the product Of the dry weight (mg/ml) of
cne :ulture and the overflow rate (ml/hr).

Light Measurements

Light intensity was Treasured with an ISCO
Model SR spectroradiometer between 400-700 nm In
increments of 25 nm; this data was integ 2rated to
yield light intensity in units of uW/cm . Meas-

urements were made at d points around the culture
apparatus, and the values averaged to correct for
any lack of symmetry. Light efficiency was calcu-
lated using the absorbed light intensity (cal/hr)
and the biomass productivity, converted from mg/hr
to cal/hr, assumdng a conversion of 5.5 cal/mg.
(See, e.g., R.L. Miller and C.H. Ward, in Atmos-
phere in Space Cabins and Closed Environments, pp.
id6-222 • x. kammermeyer, ad., Appleton-Century-
Crofts, New York, 1966.)

Carbon and Nitrogen Analyses

A IU-ml volume of algal culture was centri-
fuged at 10,000 RPM for 10 min, and an aliquot of
the supernatant acidified with 0.05 ml concentrated
M2SO4/ml supernatant, Glycolic acid was determined
by heating (100 9C for 20 min) the acidified super-
natant in a 4-fold greater volume of 0.01% 2,7-
dihydrozynaphthalenediol in concentrated H2504
(Calkins, Anal. Chem. 15:762, 1943)	 Absorbance
was measured at 530 nm with a Cary 15 spectros. `o-
meter. Total excreted carbon was determined b,
measuring the cnemical oxygen demand of the super-
natant (Oceanographic International Corporation's
S tanaard Ampule C.O.O. method). The nitrate con-
centration of the supernatant and growth media were

determined on a Oionex Model 16 ton chromatograph.
Nitragon analysis of the freeze-dried algal pellet
was done by an outside laboratory (Galbraith
Laboratories, Knoxville, TN).

PE74TS AND DISCUSSION

Characteristics of Cultural Cdl1s

Figure 5 Illustrates the linear relationship
between the dry weight of the cultured cells
(mg/ml), their cell number (cells/ml), and their

chlorophyll content (ug chi/ml). These data
indicate that the relationships between tell mass,

cell population, and cnloropnyll/ce11 are constant
over the range of culture conditions tested. Thus,
the cells do not appear to be changing or aaaoting
cc differenres in growth rate or tignt intensity

DRY xucMt Imglmn

Figure 2.

DRY WEIGHT lmglnll.

Figure 3.
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during these experiments (sell, e.g., Myers, Pro-
ceedings of the IBP/PP Technical Meeting, Trobon,
1970). The slopes of the two lines (computed by
standard statistical techniques) are 2.8 x 107
calls/mg dry we and 48.3 ug chl/mg dryy 

91, 
respec-

tively. This.eorresponds to 1.73 x IU" ug chi
and 3.6 x IO -' ug dry cell mass per cell.

Productivity and Light Efficient

Figure 3 illustrates the relationships between
culture productivity (lower panel) and light utili-

zation efficiency (upper panel) vs dry weight
observed in a series of experiments in anlch Scene-
oesmus was maintained in the continuous Ultu e
system shown In -igure '. The proauctivity vs dry
weignc curve rises linearly until the cell density
reacnes a level is which 11gnc oecomes limiting
- 1.4 ng ml- or - 48 ug chi 14" 4 1. At this
point, - 89x of the inotosynthecically active
radiation (PAR) is oeing aosoroea. In the Initial

linear portion of the curve, iroductivity Is
limited oy cell growth it the given light Incens-
ity. The slope of this initial portionreflects
the maxlmlym dilution rate of the system laimensfons
of ml hr - ). In the present instance, this rate is
65 ml hr" l , which torres ponds to a douoting time of
1.8 it, 'his fairly low growth race aoouc calf
.he maximum growch race generally ooservea is this
temperature) reflects the rather low intensity of
the light source t-10 of full sunlight it the
inner wall of the algal Culture chamber;. These
low incident intensities are a main contributing
factor to the nigh 'ighc-utilization 'fficiencies
ootainea In this system, since the cells are never
an ven •nco light saturation ;see Appenoix).

The slope of the line drawn through zero and
any point on the productivity curve corresponds to
the dilution race, and therefore cne deuoling time
and growth race, ac this point. The oroduccfvity
curie rises to a value of ^ • 58 mg hr" at - 3 mg
ml" , which is - N o of the maximum theoretical
productivity (- 20% on an energy basis; see, e.g.,
Reimer, R. and B. Kok, in Encyclopedia of Plant
Physiology, Vol. 5, New Series, pp. 125-135, A.
Trebst and M. Avron, eds., Springer-Verlag, Berlin,
1977). One would predict that the productivity
would gradually decrease at very high cell densi-
ties, since increasing amounts of biomass (with
finite and significant maintenance energy) would be
supported by a constant amount of absorbed incident
light (- 97: absorption at 2.5 mg ml - ). However,
it is not Practical to ootain such data in the
Present system.

The upper panel of the figure, shows the
efficiencies" of absorbed and incident light as a
function of cell density (dry weight). The effici-
ency with respect to absorbed light (solid line)
appears to be a steadily-decreasing (linear 7)

These li ght efficiency measurements contain the
Following primary sources of error: 1) a small
volume at the bottom of the culture (- 10% of the
total volume) that is not significantly illumi-
nated; 2) the overflow cell density is only 8n
of the rnactor density; 3) the light measurements
represent the average of a somewhat asymmetriral
cylindrical light field; and 4) room light was
not excluded (< 3% of total incident light). Ail
these errors are relatively small, and the more
significant ones tend to cancel.
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function of call mass, reflecting 1) lack of light
saturation due to the low incident intensity (see
above), and 2) the significant maintenance energy
required by the (increasing) biomass. If we assume
the reality of the linear relationship, the maximum
efficiency of absorbed light in this system Is
19X. The slope of the line, 1.28: (mg/ml)-1,
reflects lesser due to maintenance energy, which Is
probably linear over the rather narrow conditions
tested. Since . 1000 efficiency corresponds to
O.JU64 'W hr my", the maintenance energy is d.19 c
10"' W hr mg - , and one would predict that the
culture would teach light compensation at a dry wt
of 14.3 mg ml - .

The efficiency with respect to Incicent Ilgnt
(dotted line) reflects the oalance between Ilght

absorptionintomdtilization the initial iscen ng
phase! and losses due to the :ellilar metaoollsm
(descending pndse). In the Present system, the
maximum light utilization efficiency occurs at l.:

to 2.3 mg ml
-1
 dry wc. -he descenaing Phase

becomes identical to the "aosorced 'ignt" Curve it
nign cell densities.

Nitrogen Utilization Efficiency

/,rauss ac. ii. ;Prot. 21st aT enary '4een ng,
Committee on Space lesearca *.CdSPARI,
ported that a significant fraction of the `V03'
nitrogen provided co Chlorella cuiturea in a

"recyclostat" was lost, orooaoly as 'NU. Tne
release of this gas into the acmospner'e of a closed
system could cause grave proolems for the air
regeneration system, as weii as =crinuce to a
lack of closure of the nitrogen cycle.

Because of these earlier results, one if our
goals was co determine the nitrogen oalance of
Scenedesmus cultures, and specifically, wnether

compounds such as 1120  were excreted Inca cne
medium. Our initial approach was to determine the
nitrogen levels of the nutrient medium, cell-free
efflux, and harvested algae.

The results of these experiments fTaole 1)
show surprisingly good agreement oetween adoea and
recovered ti (average 100.51 recovery) and suggest
that the nitrogen entering the culture (as NI)3-)
was either incorporated in the algae or appeared as
NO 9 - in the efflux supernatant. We have had no
indication to date that the nitrogen is lost by the
system. A.lthougn these results do not prove that
there is no nitrogen loss, they do suggest chat any
loss must be small (e.g., k 1.), at least ,'Pr '10 3 .

TABLE I

S4.ale	 YI t.e9.. m91i1	 i.to.ary

4 01tn	 Seo.m4wt	 119..	 al

I	 A9 216 IS) IOL2

E	 29] 120 lil )9.a

S	 290 123 121 '01.4

]	 290 122 15a 100.4

Because our data obtained with Scenedesmus
point to avery low production of nitrogenous by-
products, we have not attempted to determine t120
directly. (Current data indicate that the v20

^,t



concentration in the gas stretm would be too low to
monitor directly.) We have observed only it of
NO2 - (( 1 ppm) in the effluent supernatant.

Long-Term Culture

We maintained continuous Scenedesmus cultures
of this type for about 4 monthss oeror^untary
shut down. The cultures were monitored daily for
packed rell volume (PCV), chlorophyll, dry weight,
reproduction rate, and pH, and intermittently for
glycolate, total N, and microbial contamination.
Representative data from these long-term experi-
ments is shown in Figure 4. Note that the culture
system displays good long-term stability.
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Figure a.

We addressed the interrelated topics of algal
oy-product excretion and microoial contamination oy
periodically assaying the culture supernatant. To
date, we have detected no significant glycolate
(< I ppm of this primary algal excretory product),
or excreted carbon (< 25 ppm) while our cultures
were in the steady state. Parallel microbial
assays in some cases indicated a low (0.1 - 0.01.)
non-algal biomass that did not change appreciably
(with time) with res pect to amount or species
composition. These findings suggest that microoial
contamination should not be a significant problem
in such cultures because 1) the algae seem to
excrete little or no organic compounds; and 2)
microbial populations, even when present, do not
take over the culture.

APPENOIA

Relationship of Light Intensity to

Turnover of the Photosynthetic Apparatus

One of the primary limitations of most photo-
synthetic organisms is that they do not perform
well to strong light (e.g., full sunlight). The
photosynthetic apparatus operates somewhat like a
lens; approximately 200 "light-harvesting" chloro-
phyll molecules transfer light energy to a reaction
center, with a corresponding increase in the effec-
tive light intensity per center. Consequently,
efficiency can be very high in weak light, but
drops off rapidly at intensities approaching that
of bright sunlight, due to the rather slow (ms)
turnover of the dark reactions (see, e.g., R. Red-
mer and B. Kok, In Encyclopedia of Plant Physi-
ology, 'V 1. 5, New Series, pp. 125-135, A Tre list
and M. Avron, eds., Springer-Verlag, Berlin, 1977).
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Figure b Is an idealized cross sectional
diagram of our algal culture system. The light
flux value (in units of photosynthetically-active
quanta cm- s - ) were measured in the absence of
algae. Note that they closely follow a 1/r rela-
tionship, suggesting that the total flux is
conserved (except for losses due to reflection and
absorption by the glass walls) during its passage
through the concentric cylinders.
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Figure 5.

A rougn estimate of the lignt flux oer rear.
.ion center can ce .made as follows. Jur rata
Indicate that Scenedesmus ias a specific aosdrocion
coefficient o - .0 1 cm' t 9" over the spectral
range of 400-700 om (specific data not shown), and
a chlorophyll content of 4.8% (Figure 2; see also
J. Myers, in Encyclopedia of C

h

hemical Technology,

spends N ti l (056) i (1000 ecm^) O cm , g furor 600 t cm^ g-1.

Thos, T2he equivalent specific absorption is 1.2 x
10 cm (g chid ropnyll)", anion is about 10% 3f
the extinction coefficient observed at the aosg6p-
tion maxima. Since one 9 chloropnyll - 6 x 10

molecules, the molecular cross sect}on (- extinc-
tion coefficient) is 0.2 x 10-Ib cm (chlorophyll
molecule) - .

The maximum quantum Plux that; thg algae are
subject ed i co -is 1.4 x 1016 nu Lm -° s - or 0.28 ri
molecule' s . Since each reaction center is
connected to - 200 chlorophyll molecules (see
above), the maximum quantum flux will result in the
transfer of - 60 nv s - to aacn reaction center.

This value is well below the generally
accepted maximum reaction center turnover rate of
-. 100 s -1 (Radmer and Kok, op.cit.). Thus the
photosynthetic dark reactions are able to keep pace
with the light flux, the system does not become
light saturated, and high light efficiencies can be
obtained.
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