38 research outputs found
Including Functional Annotations and Extending the Collection of Structural Classifications of Protein Loops (ArchDB)
Loops represent an important part of protein structures. The study of loop is critical for two main reasons: First, loops are often involved in protein function, stability and folding. Second, despite improvements in experimental and computational structure prediction methods, modeling the conformation of loops remains problematic. Here, we present a structural classification of loops, ArchDB, a mine of information with application in both mentioned fields: loop structure prediction and function prediction. ArchDB (http://sbi.imim.es/archdb) is a database of classified protein loop motifs. The current database provides four different classification sets tailored for different purposes. ArchDB-40, a loop classification derived from SCOP40, well suited for modeling common loop motifs. Since features relevant to loop structure or function can be more easily determined on well-populated clusters, we have developed ArchDB-95, a loop classification derived from SCOP95. This new classification set shows a ~40% increase in the number of subclasses, and a large 7-fold increase in the number of putative structure/function-related subclasses. We also present ArchDB-EC, a classification of loop motifs from enzymes, and ArchDB-KI, a manually annotated classification of loop motifs from kinases. Information about ligand contacts and PDB sites has been included in all classification sets. Improvements in our classification scheme are described, as well as several new database features, such as the ability to query by conserved annotations, sequence similarity, or uploading 3D coordinates of a protein. The lengths of classified loops range between 0 and 36 residues long. ArchDB offers an exhaustive sampling of loop structures. Functional information about loops and links with related biological databases are also provided. All this information and the possibility to browse/query the database through a web-server outline an useful tool with application in the comparative study of loops, the analysis of loops involved in protein function and to obtain templates for loop modeling
The Release of Soluble Factors Contributing to Endothelial Activation and Damage after Hematopoietic Stem Cell Transplantation Is Not Limited to the Allogeneic Setting and Involves Several Pathogenic Mechanisms
AbstractThis study evaluated the relative impact of the intensity of the conditioning regimen and the alloreactivity in the endothelial dysfunction occurring after allogeneic hematopoietic stem cell transplantation (allo-HSCT). It involved a comparative analysis of the effect of incubating human umbilical vein endothelial cells (ECs) with serum samples from patients receiving autologous HSCT (auto-HSCT) or unrelated donor allo-HSCT. In both groups, blood samples were collected through a central line before conditioning (Pre), before transplantation (day 0), and at days 7, 14, and 21 after transplantation. Changes in the expression of EC receptors and adhesion proteins, adhesion of leukocytes and platelets under flow, and signaling pathways were analyzed. Endothelial activation and damage were observed in both groups, but with differing patterns. All markers of endothelial dysfunction demonstrated a progressive increase from day Pre to day 14 in the auto-HSCT group and exhibited 2 peaks of maximal expression (at days 0 and 21) in the allo-HSCT group. Both treatments induced a proinflammatory state (ie, expression of adhesion receptors, leukocyte adhesion, and p38 MAPK activation) and cell proliferation (ie, morphology and activation of ErK42/44). Prothrombotic changes (ie, von Willebrand factor expression and platelet adhesion) predominated after allo-HSCT, and a proapoptotic tendency (ie, activation of SAPK/JNK) was seen only in this group. These findings indicate that endothelial activation and damage after HSCT also occur in the autologous setting and affect macrovascular ECs. After the initial damage induced by the conditioning regimen, other factors, such as granulocyte colony-stimulating factor (G-CSF) toxicity, engraftment, and alloreactivity, may contribute to the endothelial damage seen during HSCT. Further studies are needed to explore the association between this endothelial damage and the vascular complications associated with HSCT
Combination of the Hematopoietic Cell Transplantation Comorbidity Index and the European Group for Blood and Marrow Transplantation Score Allows a Better Stratification of High-Risk Patients Undergoing Reduced-Toxicity Allogeneic Hematopoietic Cell Transplantation
This study was conducted to determine whether the integration of the Hematopoietic Cell Transplantation Comorbidity Index (HCT-CI) and the European Group for Blood and Marrow Transplantation (EBMT) score would improve individual capacity for stratification of high-risk HCT candidates. A total of 442 consecutive patients receiving an allogeneic HCT after reduced-toxicity conditioning was included. Final HCT-CI and EBMT scores were calculated and validated. Then, patients were grouped into a 6-category new combination model according to the HCT-CI (0, 1 to 2, ≥3) and EBMT scores (0 to 3, 4 to 7), and the model's predictive capacity was also evaluated. Median HCT-CI and EBMT scores were 3 and 4, respectively. Increased HCT-CI was associated with higher 4-year nonrelapse mortality (NRM) and lower 4-year overall survival (OS), whereas a high EBMT score was associated with higher 4-year NRM. The HCT-CI showed a trend for a better predictive capacity than the EBMT score (c-statistic.6 versus.54, P=1). According to the new model, patients within HCT-CI of 0 and HCT-CI of 1 to 2 groups had similar risk of NRM independently of their EBMT score. Within the HCT-CI ≥ 3 group, patients with low EBMT score showed lower NRM (25% versus 40%, P=04) and a trend to higher OS (52% versus 36%, P=06) than patients with a high EBMT score. Moreover, patients with HCT-CI ≥ 3 and EBMT score 0 to 3 had similar outcomes than those with HCT-CI of 1 to 2. In conclusion, the combination of HCT-CI and the EBMT score is feasible and might contribute to a better identification of high-risk patients, improving selection of best allogeneic HCT candidates. © 2014 American Society for Blood and Marrow Transplantation
Succinate Pathway in Head and Neck Squamous Cell Carcinoma: Potential as a Diagnostic and Prognostic Marker
Simple Summary: Emerging evidence points to succinate as an important oncometabolite in cancer development; however, the contribution of the succinate-SUCNR1 axis to cancer progression remains unclear. Head and neck squamous cell carcinoma (HNSCC) is associated with disease and treatmentrelated morbidity so there is an urgent need for innovation in treatment and diagnosis practices. Our aim was to evaluate the potential of the succinate-related pathway as a diagnostic and prognostic biomarker in HNSCC. The circulating succinate levels are increased in HNSCC, being a potential noninvasive biomarker for HNSCC diagnosis. Moreover, the succinate receptor (SUCNR1) and genes related to succinate metabolism, which are predominantly expressed in the tumoral mucosa as compared with healthy tissue, are positively associated with plasma succinate. Remarkably, we found that SUCNR1 and SDHA expression levels predict prognosis
Quantitative PCR Is Faster, More Objective, and More Reliable Than Immunohistochemistry for the Diagnosis of Cytomegalovirus Gastrointestinal Disease in Allogeneic Stem Cell Transplantation
Diagnosis of gastrointestinal (GI) cytomegalovirus (CMV) disease relies on the presence of GI symptoms and detection of CMV, mainly by immunohistochemistry (IHC), in GI biopsy specimens. Thus, in a symptomatic patient, a positive CMV-IHC result is accepted as a diagnosis of CMV disease. However, a positive CMV-PCR in GI tissue is considered "possible" CMV disease. Therefore, it would be very useful if, in practice, both techniques showed equal sensitivity and reliability. This is because PCR has many practical advantages over IHC for detecting CMV. The aim of this study was to compare quantitative PCR with IHC for the diagnosis of GI CMV disease. A total of 186 endoscopic GI biopsy specimens from 123 patients with GI symptoms after an allogeneic stem cell transplantation (allo-SCT; 2004-2017) were analyzed by IHC and PCR on 113 paraffin-embedded and 73 fresh samples. The results were then compared. Of the patients with macroscopic lesions in the mucosa and CMV-IHC-positive biopsy specimens (eg, "proven" CMV disease, n = 28), all but 1 were CMV-PCR positive. Of the patients without macroscopic lesions in the mucosa and CMV-IHC-positive biopsy specimens (eg, probable CMV disease, n = 4), only 1 was CMV-PCR positive. Eight patients had CMV-IHC-negative/CMV-PCR-positive gut biopsy specimens. These cases fall within the current definition of possible CMV disease. In 6 of these 8 cases (75%), the viral load in GI tissue was very high (>10,000 copies/µg). Taken together, the results from the proven and probable cases revealed that CMV-PCR shows the same sensitivity (100%), specificity (98%), and positive (93%) and negative predictive value (100%) as CMV-IHC. Detection of CMV in fresh GI mucosa by quantitative PCR is as useful as IHC for the diagnosis of GI CMV disease. The results show that quantitative PCR has the same sensitivity, specificity, and positive/negative predictive value as IHC
Case report : Challenges in immune reconstitution following hematopoietic stem cell transplantation for CTLA-4 insufficiency-like primary immune regulatory disorders
Cytotoxic T-lymphocyte antigen-4 (CTLA-4) haploinsufficiency is a T-cell hyperactivation disorder that can manifest with both immunodeficiency and immune dysregulation. Approximately one-third of patients may present mild symptoms and remain stable under supportive care. The remaining patients may develop severe multiorgan autoimmunity requiring lifelong immunosuppressive treatment. Hematopoietic stem cell transplantation (HSCT) is potentially curable for patients with treatment-resistant immune dysregulation. Nevertheless, little experience is reported regarding the management of complications post-HSCT. We present case 1 (CTLA-4 haploinsufficiency) and case 2 (CTLA-4 insufficiency-like phenotype) manifesting with severe autoimmunity including cytopenia and involvement of the central nervous system (CNS), lung, and gut and variable impairment of humoral responses. Both patients underwent HSCT for which the main complications were persistent mixed chimerism, infections, and immune-mediated complications [graft-versus-host disease (GVHD) and nodular lung disease]. Detailed management and outcomes of therapeutic interventions post-HSCT are discussed. Concretely, post-HSCT abatacept and human leukocyte antigen (HLA)-matched sibling donor lymphocyte infusions may be used to increase T-cell donor chimerism with the aim of correcting the immune phenotype of CTLA-4 haploinsufficiency
Response to Novel Drugs before and after Allogeneic Stem Cell Transplantation in Patients with Relapsed Multiple Myeloma
Multiple myeloma (MM) remains as an incurable disease and, although allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative approach, most patients ultimately relapse, and their treatment remains challenging. Because allo-HSCT can modify not only the biology of the disease, but also the immune system and the microenvironment, it can potentially enhance the response to rescue therapies. Information on the efficacy and safety of novel drugs in patients relapsing after allo-HSCT is lacking, however. The objectives of this study were to evaluate the efficacy and toxicity of rescue therapies in patients with MM who relapsed after allo-HSCT, as well as to compare their efficacy before and after allo-HSCT. This retrospective multicenter study included 126 consecutive patients with MM who underwent allo-HSCT between 2000 and 2013 at 8 Spanish centers. All patients engrafted. The incidence of grade II-IV acute graft-versus-host disease (GVHD) was 47%, and nonrelapse mortality within the first 100 days post-transplantation was 13%. After a median follow-up of 92 months, overall survival (OS) was 51% at 2 years and 43% at 5 years. The median progression-free survival after allo-HSCT was 7 months, whereas the median OS after relapse was 33 months. Patients relapsing in the first 6 months after transplantation had a dismal prognosis compared with those who relapsed later (median OS, 11 months versus 120 months; P <.001). The absence of chronic GVHD was associated with reduced OS after relapse (hazard ratio, 3.44; P <.001). Most patients responded to rescue therapies, including proteasome inhibitors (PIs; 62%) and immunomodulatory drugs (IMiDs; 77%), with a good toxicity profile. An in-depth evaluation, including the type and intensity of PI- and IMiD-based combinations used before and after allo-HSCT, showed that the overall response rate and duration of response after allo-HSCT were similar to those seen in the pretransplantation period. Patients with MM who relapse after allo-HSCT should be considered candidates for therapy with new drugs, which can achieve similar response rates with similar durability as seen in the pretransplantation period. This pattern does not follow the usual course of the disease outside the transplantation setting, where response rates and time to progression decreases with each consecutive line of treatment
A Customized Pigmentation SNP Array Identifies a Novel SNP Associated with Melanoma Predisposition in the SLC45A2 Gene
As the incidence of Malignant Melanoma (MM) reflects an interaction between skin colour and UV exposure, variations in genes implicated in pigmentation and tanning response to UV may be associated with susceptibility to MM. In this study, 363 SNPs in 65 gene regions belonging to the pigmentation pathway have been successfully genotyped using a SNP array. Five hundred and ninety MM cases and 507 controls were analyzed in a discovery phase I. Ten candidate SNPs based on a p-value threshold of 0.01 were identified. Two of them, rs35414 (SLC45A2) and rs2069398 (SILV/CKD2), were statistically significant after conservative Bonferroni correction. The best six SNPs were further tested in an independent Spanish series (624 MM cases and 789 controls). A novel SNP located on the SLC45A2 gene (rs35414) was found to be significantly associated with melanoma in both phase I and phase II (P<0.0001). None of the other five SNPs were replicated in this second phase of the study. However, three SNPs in TYR, SILV/CDK2 and ADAMTS20 genes (rs17793678, rs2069398 and rs1510521 respectively) had an overall p-value<0.05 when considering the whole DNA collection (1214 MM cases and 1296 controls). Both the SLC45A2 and the SILV/CDK2 variants behave as protective alleles, while the TYR and ADAMTS20 variants seem to function as risk alleles. Cumulative effects were detected when these four variants were considered together. Furthermore, individuals carrying two or more mutations in MC1R, a well-known low penetrance melanoma-predisposing gene, had a decreased MM risk if concurrently bearing the SLC45A2 protective variant. To our knowledge, this is the largest study on Spanish sporadic MM cases to date