34 research outputs found

    COVID-19 Convalescent Plasma Therapy Decreases Inflammatory Cytokines: A Randomized Controlled Trial

    Get PDF
    This study examined the role that cytokines may have played in the beneficial outcomes found when outpatient individuals infected with SARS-CoV-2 were transfused with COVID-19 convalescent plasma (CCP) early in their infection. We found that the pro-inflammatory cytokine IL-6 decreased significantly faster in patients treated early with CCP. Participants with COVID-19 treated with CCP later in the infection did not have the same effect. This decrease in IL-6 levels after early CCP treatment suggests a possible role of inflammation in COVID-19 progression. The evidence of IL-6 involvement brings insight into the possible mechanisms involved in CCP treatment mitigating SARS-CoV-2 severity

    Dynamics of Inflammatory Responses After SARS-CoV-2 Infection by Vaccination Status in the USA: A Prospective Cohort Study

    Get PDF
    BACKGROUND: Cytokines and chemokines play a critical role in the response to infection and vaccination. We aimed to assess the longitudinal association of COVID-19 vaccination with cytokine and chemokine concentrations and trajectories among people with SARS-CoV-2 infection. METHODS: In this longitudinal, prospective cohort study, blood samples were used from participants enrolled in a multi-centre randomised trial assessing the efficacy of convalescent plasma therapy for ambulatory COVID-19. The trial was conducted in 23 outpatient sites in the USA. In this study, participants (aged ≥18 years) were restricted to those with COVID-19 before vaccination or with breakthrough infections who had blood samples and symptom data collected at screening (pre-transfusion), day 14, and day 90 visits. Associations between COVID-19 vaccination status and concentrations of 21 cytokines and chemokines (measured using multiplexed sandwich immunoassays) were examined using multivariate linear mixed-effects regression models, adjusted for age, sex, BMI, hypertension, diabetes, trial group, and COVID-19 waves (pre-alpha or alpha and delta). FINDINGS: Between June 29, 2020, and Sept 30, 2021, 882 participants recently infected with SARS-CoV-2 were enrolled, of whom 506 (57%) were female and 376 (43%) were male. 688 (78%) of 882 participants were unvaccinated, 55 (6%) were partly vaccinated, and 139 (16%) were fully vaccinated at baseline. After adjusting for confounders, geometric mean concentrations of interleukin (IL)-2RA, IL-7, IL-8, IL-15, IL-29 (interferon-λ), inducible protein-10, monocyte chemoattractant protein-1, and tumour necrosis factor-α were significantly lower among the fully vaccinated group than in the unvaccinated group at screening. On day 90, fully vaccinated participants had approximately 20% lower geometric mean concentrations of IL-7, IL-8, and vascular endothelial growth factor-A than unvaccinated participants. Cytokine and chemokine concentrations decreased over time in the fully and partly vaccinated groups and unvaccinated group. Log INTERPRETATION: Initially and during recovery from symptomatic COVID-19, fully vaccinated participants had lower concentrations of inflammatory markers than unvaccinated participants suggesting vaccination is associated with short-term and long-term reduction in inflammation, which could in part explain the reduced disease severity and mortality in vaccinated individuals. FUNDING: US Department of Defense, National Institutes of Health, Bloomberg Philanthropies, State of Maryland, Mental Wellness Foundation, Moriah Fund, Octapharma, HealthNetwork Foundation, and the Shear Family Foundation

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Clinical Isolates of Shiga Toxin 1a–Producing Shigella flexneri with an Epidemiological Link to Recent Travel to Hispañiola

    No full text
    Shiga toxins (Stx) are cytotoxins involved in severe human intestinal disease. These toxins are commonly found in Shigella dysenteriae serotype 1 and Shiga-toxin–producing Escherichia coli; however, the toxin genes have been found in other Shigella species. We identified 26 Shigella flexneri serotype 2 strains isolated by public health laboratories in the United States during 2001–2013, which encode the Shiga toxin 1a gene (stx1a). These strains produced and released Stx1a as measured by cytotoxicity and neutralization assays using anti-Stx/Stx1a antiserum. The release of Stx1a into culture supernatants increased ≈100-fold after treatment with mitomycin C, suggesting that stx1a is carried by a bacteriophage. Infectious phage were found in culture supernatants and increased ≈1,000-fold with mitomycin C. Whole-genome sequencing of several isolates and PCR analyses of all strains confirmed that stx1a was carried by a lambdoid bacteriophage. Furthermore, all patients who reported foreign travel had recently been to Hispañiola, suggesting that emergence of these novel strains is associated with that region

    Prevalence and correlates of SARS-CoV-2 seropositivity among people who inject drugs in Baltimore, Maryland

    No full text
    Background: SARS-CoV-2 serosurveys can help characterize disparities in SARS-CoV-2 infection and identify gaps in population immunity. Data on SARS-CoV-2 seroprevalence among people who inject drugs (PWID) are limited. Methods: We conducted a cross-sectional study between December 2020 and July 2022 among 561 participants in the AIDS Linked to the IntraVenous Experience (ALIVE) study—a community-based cohort of current and former PWID in Baltimore, Maryland. Serum samples were assayed for infection-induced anti-nucleocapsid (anti-N) and infection and/or vaccination-induced anti-spike-1 (anti-S) SARS-CoV-2 IgG. We estimated adjusted prevalence ratios (aPR) via modified Poisson regression models. Results: The median age was 59 years, 35% were female, 84% were non-Hispanic Black, and 16% reported recent injection drug use. Anti-N antibody prevalence was 26% and anti-S antibody prevalence was 63%. Anti-N and anti-S antibody prevalence increased over time. Being employed (aPR=1.53 [95%CI=1.11–2.11]) was associated with higher anti-N prevalence, while a cancer history (aPR=0.40 [95%CI=0.17–0.90]) was associated with lower anti-N prevalence. HIV infection was associated with higher anti-S prevalence (aPR=1.13 [95%CI=1.02–1.27]), while younger age and experiencing homelessness (aPR=0.78 [95%CI=0.60–0.99]) were factors associated with lower anti-S prevalence. Substance use-related behaviors were not significantly associated with anti-N or anti-S prevalence. Conclusions: SARS-CoV-2 seroprevalence increased over time among current and former PWID, suggesting cumulative increases in the incidence of SARS-CoV-2 infection and vaccination; however, there were disparities in infection-induced seroprevalence and infection and/or vaccine-induced seroprevalence within this study sample. Dedicated prevention and vaccination programs are needed to prevent disparities in infection and gaps in population immunity among PWID during emerging epidemics

    Validation of population-level HIV-1 incidence estimation by cross-sectional incidence assays in the HPTN 071 (PopART) trial.

    No full text
    INTRODUCTION: Cross-sectional incidence testing is used to estimate population-level HIV incidence and measure the impact of prevention interventions. There are limited data evaluating the accuracy of estimates in settings where antiretroviral therapy coverage and levels of viral suppression are high. Understanding cross-sectional incidence estimates in these settings is important as viral suppression can lead to false recent test results. We compared the accuracy of multi-assay algorithms (MAA) for incidence estimation to that observed in the community-randomized HPTN 071 (PopART) trial, where the majority of participants with HIV infection were virally suppressed. METHODS: HIV incidence was assessed during the second year of the study, and included only individuals who were tested for HIV at visits 1 and 2 years after the start of the study (2016-2017). Incidence estimates from three MAAs were compared to the observed incidence between years 1 and 2 (MAA-C: LAg-Avidity 400 copies/ml; LAg+VL MAA: LAg-Avidity 1000 copies/ml; Rapid+VL MAA: Asanté recent rapid result + VL >1000 copies/ml). The mean duration of recent infection (MDRI) used for the three MAAs was 248, 130 and 180 days, respectively. RESULTS AND DISCUSSION: The study consisted of: 15,845 HIV-negative individuals; 4406 HIV positive at both visits; and 221 who seroconverted between visits. Viral load (VL) data were available for all HIV-positive participants at the 2-year visit. Sixty four (29%) of the seroconverters and 3227 (72%) prevelant positive participants were virally supressed (<400 copies/ml). Observed HIV incidence was 1.34% (95% CI: 1.17-1.53). Estimates of incidence were similar to observed incidence for MAA-C, 1.26% (95% CI: 1.02-1.51) and the LAg+VL MAA, 1.29 (95% CI: 0.97-1.62). Incidence estimated by the Rapid+VL MAA was significantly lower than observed incidence (0.92%, 95% CI: 0.69-1.15, p<0.01). CONCLUSIONS: MAA-C and the LAg+VL MAA provided accurate point estimates of incidence in this cohort with high levels of viral suppression. The Rapid+VL significantly underestimated incidence, suggesting that the MDRI recommended by the manufacturer is too long or the assay is not accurately detecting enough recent infections
    corecore